相关论文:
-
-
全球能源互联网
第5卷 第4期 2022年07月;页码:398-408
碳中和目标下可再生能源匮乏型国家电力发展研究 ——以新加坡为例
Research on Power Development of Renewable Energy Deficient Countries Towards the Goal of Carbon Neutrality: A Case Study of Singapore
- 1. 全球能源互联网发展合作组织,北京市 西城区 100031
- 2. 国网石家庄供电公司,河北省 石家庄市 050041
- 3. 清华大学,北京市 海淀区 100084
- BAI Su1, BAI Yunfei2, YUAN Jun3, LIU Zhe1, GAO Yi1* (1. Global Energy Interconnection Development and Cooperation Organization, Xicheng District, Beijing 100031, China
- 2. State Grid Shijiazhuang Electric Power Supply Company, Shijiazhuang 050041, Hebei Province, China
- 3. Tsinghua University, Haidian District, Beijing 100084, China
关键词
Keywords
摘 要
Abstract
随着全球120多个国家陆续宣布碳中和目标,可再生能源资源不足地区、国家如何实现碳中和成为研究的焦点。新加坡可再生能源匮乏,如何在应对气候变化的同时满足国内能源需求,促进可持续发展一直是新加坡的重要课题之一。新加坡电力需求分布在居民、商业、交通和工业四大部门,通过历史数据分析各部门能源需求的变化规律,以碳中和为目标,2050年能源需求为约束,提出新加坡各部门的能源转型方向,并据此预测碳中和目标下新加坡电力需求。再通过模型分析新加坡2050年电力供应方式,规划结果显示,新加坡电力供应方式将从气电为主转变为太阳能、生物质和氢能等可再生能源为主。但由于新加坡可再生资源潜力不足,电力和氢能均需进口,以中国—新加坡和澳大利亚—新加坡为例,对陆上远距离输电、跨海远距离输电和海运输氢经济性进行对比分析,计算结果表明全球能源互联网框架下的陆上远距离输电经济性最优,度电成本为8.8美分/kWh;进口液氢就地发电其次,成本为15美分/kWh;海上远距离电力进口成本最高,达17美分/kWh。
As more than 120 countries have announced the goal of carbon neutrality, how to achieve carbon neutrality in areas with insufficient renewable resources has become the focus.How to meet energy demand while dealing with climate change and promoting sustainable development is an important issue for Singapore. Singapore’s electricity demand is distributed in four major sectors: residential, commercial, transport, and industrial sectors. Based on the historical data, this paper analyzes the changing law of energy demand of various sectors, takes carbon neutrality as the goal and 2050 energy demand as the constraint,and puts forward the direction of energy transformation of various sectors in Singapore. According to the energy mix, the power demand of Singapore towards the carbon neutrality target is predicted. Through the optimization model, the power supply mode of Singapore in 2050 is analyzed. The planning results show that the power supply mode of Singapore will change from gas to renewable energy such as solar energy, biomass,and hydrogen energy. However, due to the insufficient potential of renewable resources in Singapore, both electricity and hydrogen energy need to be imported. Taking China-Singapore and Australia-Singapore as examples, this paper makes a comparative analysis of the economy of land long-distance transmission, cross-sea long-distance transmission, and maritime hydrogen transmission. The results show that the onshore longdistance transmission is the best, with the levelized cost of electricity (LCOE) of 8.8 cents/kWh, followed by hydrogen,with the LCOE of 15 cents/kWh, and offshore long-distance electricity imports with the highest LCOE of 17 cents/kWh.
参考文献
-
[1]
IEA. Net zero by 2050-A roadmap for the global energy sector[R/OL].(2021-06)[2021-11].https://iea.blob.core.windows.net/assets/327b3e18-319c-4107-9b97-8c5a1a79b94e/NetZeroby2050-ARoadmapfortheGlobalEnergySector_Chinese.pdf. [百度学术]
-
[2]
IRENA. Reaching zero with renewables: A summary for decision makers[R/OL].(2020-09) [2021-11].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/IRENA_Reaching_zero_2020.pdf. [百度学术]
-
[3]
全球能源互联网发展合作组织. 全球碳中和之路[M]. 北京:中国电力出版社, 2021. [百度学术]
-
[4]
Mckinsey. Global energy perspective 2021 [R/OL].(2021-01)[2021-11].https://www.mckinsey.com/~/media/McKinsey/Industries/Oil and Gas/Our Insights/Global Energy Perspective 2021/Global-Energy-Perspective-2021-final.pdf. [百度学术]
-
[5]
WANG J Y, CANG M, ZHAI X M, et al. Research on powersupply cost of regional power system under carbon-peak target[J]. Global Energy Interconnection, 2022, 5(1): 31-43. [百度学术]
-
[6]
IEA. World energy outlook 2020[R/OL]. (2020-12)[2021-11].https://iea.blob.core.windows.net/assets/8b420d70-b71d-412da4f0-869d656304e4/Chinese-Summary-WEO2020.pdf. [百度学术]
-
[7]
项目综合报告编写组.《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境,2020,30(11):1-25. [百度学术]
-
[8]
IEA. Renewable energy market update outlook for 2021 and 2022[R/OL]. (2021-05)[2021-11]. https://www.iea.org/reports/renewable-energy-market-update-2021#:~:text=Highlights,new%20power%20capacity%20 expansion%20globally. [百度学术]
-
[9]
赵腾,邬炜,李隽,等. “两个替代”趋势下的欧洲跨国电力互联通道研究[J]. 全球能源互联网,2020,3(6):632-642.ZHAO Teng, WU Wei, LI Jun, et al. Research on cross-border power interconnection channels in Europe under trend of two replacements[J]. Journal of Global Energy Interconnection,2020, 3(6): 632-642(in Chinese). [百度学术]
-
[10]
汪洋子,梁才浩,孟婧,等. 煤电退出与电力系统转型规划:智利案例研究[J]. 全球能源互联网,2021,4(4):363-371.WANG Yangzi, LIANG Caihao, MENG Jing, et al. Coal phase-out and power system transition planning: Chile case study[J]. Journal of Global Energy Interconnection, 2021, 4(4):363-371(in Chinese). [百度学术]
-
[11]
KHEW E E. Renewable energy and its relevance for Singapore in 2065[M]//QUah E T E.Singapore 2065:Leading insights on economy and environment from 50 Singapore icons and beyond. World Scientific Publishing Co., Pte. Ltd., 2015:113-118. [百度学术]
-
[12]
Singapore Energy Market Authority. Singapore electricity market outlook (SEMO) 2018:Third Edition[R/OL].(2019-01-11)[2021-11]. https://www.ema.gov.sg/cmsmedia/Singapore_Electricity_Market_Outlook_2018_Final_rev11Jan2019.pdf. [百度学术]
-
[13]
KARTHIKEYA B R, NEGI P S, SRIKANTH N. Wind resource assessment for urban renewable energy application in Singapore[J]. Renewable Energy, 2016, 87: 403-414. [百度学术]
-
[14]
AMIN Z M, HAWLADER M N A. A review on solar assisted heat pump systems in Singapore[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 286-293. [百度学术]
-
[15]
KING S, WETTERGREN P. Feasibility study of renewable energy in Singapore[R]. KTH Royal Institute of Technology,2011. [百度学术]
-
[16]
QUEK A, EE A, NG A, et al. Challenges in environmental sustainability of renewable energy options in Singapore[J].Energy Policy, 2018, 122: 388-394. [百度学术]
-
[17]
白苏,高艺. 新加坡太阳能资源评估及发展路径研究[J]. 中外能源,2021,26(12):26-34.BAI Su, GAO Yi. Study on evaluation and development routes of solar energy resources in Singapore[J]. Sino-Global Energy,2021, 26(12): 26-34(in Chinese). [百度学术]
-
[18]
Singapore Energy Market Authority. SES public 2020[EB/OL].(2020)[2021-11].https://www.ema.gov.sg/assets/stat_table/SES_Public_2020.xlsx. [百度学术]
-
[19]
Singapore National Statistical Office. Population[EB/OL].(2021)[2021-11].https://www.singstat.gov.sg/find-data/searchby-theme/population/geographic-distribution/latest-data. [百度学术]
-
[20]
UNDESA. World population prospect 2019[R/OL]. (2019-06)[2021-11]. https://www.un.org/development/desa/pd/zh/node/3476. [百度学术]
-
[21]
Singapore National Statistical Office. National accounts[EB/OL]. (2021)[2021-11]. https://www.singstat.gov.sg/find-data/search-by-theme/economy/national-accounts/latest-data. [百度学术]
-
[22]
Singapore Land Transport Authority (LTA). Blueprint of Singapore transport development in 2040[R/OL]. (2019-05)[2021-11]. https://www.lta.gov.sg/content/dam/ltagov/who_we_are/our_work/land_transport_master_plan_2040/pdf/LTA%20LTMP%202040%20eReport.pdf. [百度学术]
-
[23]
Solar Energy Research Institute of Singapore. Solar photovoltaic (PV) roadmap for Singapore[R/OL]. (2020-04)[2021-11]. https://www.nccs.gov.sg/docs/default-source/default-document-library/solar-photovoltaic-roadmap-forsingapore-a-summary.pdf. [百度学术]
-
[24]
徐大懋,陈传友,梁维燕. 雅鲁藏布江水能开发[J]. 中国工程科学,2002,4(12):47-52.XU Damao, CHEN Chuanyou, LIANG Weiyan. Hydro power development at the Yalu Tsangpo River[J]. Engineering Science, 2002, 4(12): 47-52(in Chinese). [百度学术]
-
[25]
李隽,宋福龙,余潇潇. 全球能源互联网骨干网架规划研究[J]. 全球能源互联网,2018,1(5):527-536.LI Jun, SONG Fulong, YU Xiaoxiao. Research on global energy interconnection backbone grid planning[J]. Journal of Global Energy Interconnection, 2018, 1(5): 527-536(in Chinese). [百度学术]
-
[26]
赵雪莹,李根蒂,孙晓彤,等. “双碳”目标下电解制氢关键技术及其应用进展[J]. 全球能源互联网,2021,4(5):436-446.ZHAO Xueying, LI Gendi, SUN Xiaotong, et al. Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality targets[J]. Journal of Global Energy Interconnection,2021, 4(5): 436-446(in Chinese). [百度学术]
-
[27]
IEA. Projected costs of generating electricity 2020[R/OL].(2021-12)[2021-12].https://www.iea.org/reports/projectedcosts-of-generating-electricity-2020. [百度学术]
-
[28]
IRENA. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5℃ climate goal[R/OL].(2020)[2021-11].https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf. [百度学术]
-
[29]
Hydrogen Council, McKinsey. Hydrogen insights a perspective on hydrogen investment, market development and cost competitiveness[R/OL]. (2021-02)[2021-11]. https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf. [百度学术]
-
[30]
CSIRO. National hydrogen roadmap[R/OL]. (2018-08)[2021-11].https://www.csiro.au/-/media/Do-Business/Files/Futures/18-00314_EN_NationalHydrogenRoadmap_WEB_180823.pdf. [百度学术]
-
[31]
全球能源互联网发展合作组织. 大规模储能技术发展路线图[M]. 北京:中国电力出版社,2020. [百度学术]
-
[32]
黄宣旭,练继建,沈威,等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设,2020,7(2):1-13.HUANG Xuanxu, LIAN Jijian, SHEN Wei, et al. Economic analysis of China’s large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13(in Chinese). [百度学术]
-
[33]
国际氢能委员会,中国氢能联盟. 氢能平价之路[R/OL]. (2020-07)[2021-11]. http://www.h2cn.org.cn/Uploads/2020/07/30/u5f2239a793412.pdf. [百度学术]
-
[34]
庞名立. 2015—2018年全球LNG船舶情况一览[EB/OL].(2019-05)[2021-11].https://www.sohu.com/a/313544354_174505. [百度学术]
基金项目
国家自然科学基金项目(52107077);全球能源互联网集团有限公司科技项目(考虑大规模多态电能替代负荷接入的电源充裕度量化与规划方法研究,SGGEIG00JYJS2100033)。