相关论文:
-
-
全球能源互联网
第5卷 第4期 2022年07月;页码:339-347
差异化服务质量性能驱动的5G配电网边缘计算优化方法
Differentiated Quality of Service Performance Driven Edge Computing Optimization Method in 5G Power Distribution Network
- 1.华北电力大学电气与电子工程学院,北京市 昌平区 102206
- 2.国网浙江省电力有限公司信息通信分公司,浙江省 杭州市 310007
- WANG Yixue1, GAO Xuelian1, TANG Yize2, ZHANG Yi2, WANG Yanbo2 (1. School of Electrical and Electronics Engineering, North China Electric Power University, Changping District, Beijing 102206, China
- 2. State Grid Zhejiang Electric Power Company Information & Telecommunication Branch, Hangzhou 310007, Zhejiang Province, China
关键词
Keywords
摘 要
Abstract
随着高比例新能源大规模并网,配电网分布式能源调控、用户信息采集等业务对通信时延、能效等提出更高要求。5G边缘计算高效赋能配电网电力数据传输与处理。然而,任务卸载优化仍面临多设备决策耦合、多服务质量(quality of service,QoS)性能指标耦合等挑战。面向配电网多业务差异化QoS需求,针对能效敏感型与时延敏感型业务分别建立能效与时延优化问题,提出基于差异化QoS驱动与配额升价匹配的任务卸载优化算法,利用Lyapunov优化将长期随机优化问题解耦为单时隙确定性问题,基于QoS性能偏差判定业务类型,并采用配额升价匹配实现不同业务优先级设备与服务器之间的多对一稳定匹配。仿真结果验证了所提算法在能效与时延差、业务优先级感知等方面的性能优势。
With the large-scale integration of high-proportion new energy, the power distribution network services such as distributed energy regulation and user information collection pose higher requirements on the communication delay and energy efficiency. 5G edge computing effectively empowers the data transmission and processing of the power distribution network. However, task offloading optimization is still facing several challenges such as multi-device decision coupling and multiple quality of service (QoS) metric coupling. Aiming at differentiated QoS demands of multiple services in the power distribution network, the energy efficiency optimization problem and delay optimization problem are respectively established for energy efficiency sensitive services and delay sensitive services and a task offloading algorithm based on differentiated QoS driven and quota price matching is proposed. Specifically, the long-term stochastic optimization problems are decoupled into single-slot deterministic problems, and the service type is judged based on QoS performance deviation. Quota price matching is leveraged to achieve the many-to-one stable matching between devices and edge computing servers. The simulation results prove the performance advantages of the proposed algorithm in the difference in energy efficiency and delay as well as service priority awareness.
参考文献
-
[1]
宋莉,刘敦楠,庞博,等. 需求侧资源参与电力市场机制及典型案例实践综述[J]. 全球能源互联网,2021,4(4):401-410.SONG Li, LIU Dunnan, PANG Bo, et al. Mechanism of demand-side resource participation in the electricity market and typical case practice review[J]. Journal of Global Energy Interconnection, 2021, 4(4): 401-410(in Chinese). [百度学术]
-
[2]
刘增训,游沛羽,周勤勇. 适用高比例新能源系统广域消纳的输电技术研究综述[J]. 电力工程技术,2020,39(5):59-70.LIU Zengxun, YOU Peiyu, ZHOU Qinyong. Transmission technologies adapting to power systems with widelyconsumed high-proportion renewable energy[J]. Electric Power Engineering Technology, 2020, 39(5): 59-70(in Chinese). [百度学术]
-
[3]
WANG P, DU E S, ZHANG N, et al. Power system planning with high renewable energy penetration considering demand response[J]. Global Energy Interconnection, 2021, 4(1): 69-80. [百度学术]
-
[4]
方保民,李红志,孔祥鹏,等. 含高比例光伏出力的长期分布式储能配置研究[J]. 电力系统保护与控制,2021,49(2):121-129.FANG Baomin, LI Hongzhi, KONG Xiangpeng, et al.Research on long-term distributed energy storage configuration with a high proportion of photovoltaic output[J]. Power System Protection and Control, 2021, 49(2): 121-129(in Chinese). [百度学术]
-
[5]
周晨曦. 基于多业务场景的窄带物联网资源调度算法研究[D]. 北京:北京邮电大学,2021.ZHOU Chenxi. Research on NB-IoT resource scheduling algorithm based on multi service scenarios[D]. Beijing:Beijing University of Posts and Telecommunications, 2021(in Chinese). [百度学术]
-
[6]
杨墨. 基于深度强化学习的5G接入网络高能效资源分配方法[D]. 北京:北京邮电大学,2021.YANG Mo. Deep reinforcement learning based mechanism for resource allocation with high energy efficiency in 5G network[D]. Beijing: Beijing University of Posts and Telecommunications, 2021(in Chinese). [百度学术]
-
[7]
高维良,高厚磊,徐彬,等. 5G用作配电网差动保护通道的可行性分析[J]. 电力系统保护与控制,2021,49(8):1-7.GAO Weiliang, GAO Houlei, XU Bin, et al. Feasibility analysis of adopting 5G in differential protection of distribution networks[J]. Power System Protection and Control, 2021,49(8): 1-7(in Chinese). [百度学术]
-
[8]
TAN L S, ZHU Z X, GE F, et al. Utility maximization resource allocation in wireless networks: methods and algorithms[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(7): 1018-1034. [百度学术]
-
[9]
姚继明,韦磊,郭经红. 基于资源分区的电力无线专网架构设计研究[J]. 全球能源互联网,2018,1(5):589-593.YAO Jiming, WEI Lei, GUO Jinghong. Architecture design of power wireless private network based on resource partition[J].Journal of Global Energy Interconnection, 2018, 1(5): 589-593(in Chinese). [百度学术]
-
[10]
尚立,蔡硕,崔俊彬,等. 基于软件定义网络的电网边缘计算资源分配[J]. 电力系统保护与控制,2021,49(20):136-143.SHANG Li, CAI Shuo, CUI Junbin, et al. SDN-based MEC resource allocation of a power grid[J]. Power System Protection and Control, 2021, 49(20): 136-143(in Chinese). [百度学术]
-
[11]
WANG Y. A formal model of QoS-aware web service orchestration engine[J]. IEEE Transactions on Network and Service Management, 2016, 13(1): 113-125. [百度学术]
-
[12]
徐勇军,谷博文,谢豪,等. 全双工中继协作下的移动边缘计算系统能耗优化算法[J]. 电子与信息学报,2021,43(12):3621-3628.XU Yongjun, GU Bowen, XIE Hao, et al. Energy consumption optimization algorithm for full-duplex relay-assisted mobile edge computing systems[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3621-3628(in Chinese). [百度学术]
-
[13]
ZHOU Z Y, LIU P J, FENG J H, et al. Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3113-3125. [百度学术]
-
[14]
刘岗,赵杭生,李大力,等. 异构网络资源分配:改进多对一转移匹配[J]. 计算机工程与应用,2018,54(15):91-96.LIU Gang, ZHAO Hangsheng, LI Dali, et al. Resource allocation in heterogeneous network networks: modified many-to-one swap matching[J]. Computer Engineering and Applications, 2018, 54(15): 91-96(in Chinese). [百度学术]
-
[15]
丁雪乾,薛建彬. 边缘计算下基于Lyapunov优化的系统资源分配策略[J]. 微电子学与计算机,2020,37(2):63-68.DING Xueqian, XUE Jianbin. System resource allocation strategy based on Lyapunov optimization in edge computing[J].Microelectronics & Computer, 2020, 37(2): 63-68(in Chinese). [百度学术]
-
[16]
卫璇,潘昭光,王彬,等. 云管边端架构下虚拟电厂资源集群与协同调控研究综述及展望[J]. 全球能源互联网,2020,3(6):539-551.WEI Xuan, PAN Zhaoguang, WANG Bin, et al. Review on virtual power plant resource aggregation and collaborative regulation using cloud-tube-edge-end architecture[J]. Journal of Global Energy Interconnection, 2020, 3(6): 539-551(in Chinese). [百度学术]
-
[17]
ZHOU Z Y, LIAO H J, ZHAO X W, et al. Reliable task offloading for vehicular fog computing under information asymmetry and information uncertainty[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8322-8335. [百度学术]
-
[18]
熊芳,黄宏斌,黄玉成,等. 基于带QoS能力模型的资源匹配方法[J]. 计算机工程与科学,2014,36(10):1911-1918.XIONG Fang, HUANG Hongbin, HUANG Yucheng, et al. A resource matching method based on capabilities model with QoS[J]. Computer Engineering & Science, 2014, 36(10): 1911-1918(in Chinese). [百度学术]
-
[19]
HU X Y, WANG L F, WONG K K, et al. Edge and central cloud computing: a perfect pairing for high energy efficiency and low-latency[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 1070-1083. [百度学术]
-
[20]
ZHOU Z Y, GUO Y F, HE Y H, et al. Access control and resource allocation for M2M communications in industrial automation[J]. IEEE Transactions on Industrial Informatics,2019, 15(5): 3093-3103. [百度学术]
-
[21]
KRITIKOS K, PLEXOUSAKIS D. Mixed-integer programming for QoS-based web service matchmaking[J].IEEE Transactions on Services Computing, 2009, 2(2): 122-139. [百度学术]
-
[22]
LIAO H J, ZHOU Z Y, ZHAO X W, et al. Learning-based context-aware resource allocation for edge-computingempowered industrial IoT[J]. IEEE Internet of Things Journal,2020, 7(5): 4260-4277. [百度学术]
-
[23]
ZHANG Q, GUI L, HOU F, et al. Dynamic task offloading and resource allocation for mobile-edge computing in dense cloud RAN[J]. IEEE Internet of Things Journal, 2020, 7(4): 3282-3299. [百度学术]
-
[24]
HO T M, TRAN N H, LE L B, et al. Network virtualization with energy efficiency optimization for wireless heterogeneous networks[J]. IEEE Transactions on Mobile Computing, 2019,18(10): 2386-2400. [百度学术]
-
[25]
LIU P J, LI J L, SUN Z W. Matching-based task offloading for vehicular edge computing[J]. IEEE Access, 2019, 7: 27628-27640. [百度学术]
-
[26]
张智皓,冯天波,李秋烨,等. 多元QoS约束下电力通信无线资源分配的边缘代理调度方法[J]. 智慧电力,2021,49(10):104-112.ZHANG Zhihao, FENG Tianbo, LI Qiuye, et al. Edge agent scheduling method of wireless resource allocation for power communication under multiple QoS constraints[J]. Smart Power, 2021, 49(10): 104-112(in Chinese). [百度学术]
基金项目
国家电网有限公司科技项目(基于5G 电力调控业务应用创新研究,5700-202141442A-0-0-00)。
Science and Technology Foundation of SGCC (Research on Application Innovation of Power Regulation Business Based on 5G,5700-202141442A-0-0-00).