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Abstract: The coordinated optimization problem of the electricity-gas-heat integrated energy system (IES) has the 
characteristics of strong coupling, non-convexity, and nonlinearity. The centralized optimization method has a high cost of 
communication and complex modeling. Meanwhile, the traditional numerical iterative solution cannot deal with uncertainty 
and solution efficiency, which is difficult to apply online. For the coordinated optimization problem of the electricity-gas-
heat IES in this study, we constructed a model for the distributed IES with a dynamic distribution factor and transformed 
the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning 
environment using multi-agent deep deterministic policy gradient. Introducing the dynamic distribution factor allows the 
system to consider the impact of changes in real-time supply and demand on system optimization, dynamically coordinating 
different energy sources for complementary utilization and effectively improving the system economy. Compared with 
centralized optimization, the distributed model with multiple decision centers can achieve similar results while easing the 
pressure on system communication. The proposed method considers the dual uncertainty of renewable energy and load 
in the training. Compared with the traditional iterative solution method, it can better cope with uncertainty and realize real-
time decision making of the system, which is conducive to the online application. Finally, we verify the effectiveness of the 
proposed method using an example of an IES coupled with three energy hub agents.

Keywords: Integrated energy system, Multi-agent system, Distributed optimization, Multi-agent deep deterministic policy 
gradient, Real-time optimization decision.
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0	 Introduction

The dual pressures of energy crisis and environmental 
pollution urge people to reflect on the existing energy 
consumption mode and start to study the integrated 
utilization of electricity, gas, heat, and other forms of energy 
[1]. The integrated energy system (IES) produces and uses 
multiple energy, such as electricity, gas, cold, and heat, 
which can realize the integrated dispatching control and 

Scan for more details



Lei Dong et al. Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning

605

complementary utilization of various energy sources [2]. It 
also promotes better energy consumption and efficiency and 
boosts green-intensive social development [3].

With the continuous development of technologies such 
as the power to gas (P2G) and combined heat and power 
(CHP) generation, the coupling of the power grid, gas 
network, and heat network will soon be possible, which 
makes the coordinated optimization problem for IES have 
the characteristics of strong coupling, non-convexity, and 
nonlinearity. [4] realized the coordinated optimization of 
different energy entities in the electricity-gas regional IES 
by introducing consensus variables. In [5], a park CHP 
system has been constructed, which considered the chance 
constraint, but this study only considers the optimization 
dispatching of a single park and lacks research on multi-
park collaborative optimization. [6-7] have built an IES of 
electricity and gas with energy hubs (EH) as the decision 
center, realizing joint optimization dispatching of multiple 
regions, disregarding the influence of the heating system, 
the model is relatively simple. [8] developed a model for 
the IES in distributed parks with electricity, gas, cold, and 
heat, and have realized economic optimization dispatching 
of the system based on multiple scenarios. [9] proposed the 
new security constraints for integrated regional power and a 
natural gas network for a more realistic model. The complex 
coupling of multi-energy networks has been considered in 
most previous studies, and the internal structure of multi-
energy networks is usually linearized. However, there are 
differences between the model and the actual situations. 
In addition, a large amount of distributed energy is 
constantly connected to the IES, so the uncertainty problem 
in optimization cannot be ignored. Based on the CHP 
system, the randomness of wind, light, and load has been 
paid special attention to, and parts of the constraints were 
addressed as probabilities, making the CHP model more 
consistent with the actual situation [10]. [11] considered the 
influence of the uncertainty of wind power, and proposed 
a distributed robust optimization-based dispatching model 
of electricity-gas-heat-hydrogen IES. However, the model 
results are extremely conservative and the uncertainty of 
loads was disregarded. [12] used a mixed-integer interval 
linear programming method to establish the IES optimization 
model, which considers the uncertainties of multi-energy 
coupled units, and the deep learning method deals with the 
uncertainty of wind and load. But it is difficult to ensure 
high efficiency based on the traditional solution method. In 
conclusion, the high-precision model for IES which takes 
multiple uncertainties into account and aligns with actual 
working conditions must be further studied. 

However, the model structure of IES becomes more 

complex due to the participation of multiple energy. 
Centralized control has a large amount of data acquisition, 
high cost of communication, complex model and is difficult 
to solve. Therefore, distributed solutions have become a 
hotspot of current research. Architecture has been built for 
the IES with multiple EH. By comparing the centralized 
optimization results of the interior point method with the 
distributed optimization results based on the alternating 
direction method of multipliers (ADMM), we illustrate 
the feasibility of utilizing a distributed method to solve 
the optimization dispatching problem of IES [13]. [14-
15] established an IES model with multiple decision-
making agents and used an ADMM algorithm to transform 
centralized optimization into distributed autonomous 
collaborative optimization. However, the alternative 
solution is slower than the parallel solution, and it cannot 
be applied online. ADMM algorithm has been utilized 
for distributed coordinated optimization of transmission, 
distribution, and natural gas system, but the model is 
non-convex due to the natural gas system, thus making 
ADMM algorithm difficult to converge [16]. Distributed 
optimization algorithm based on generalized benders 
decomposition has realized the distributed coordinated 
optimization for the connected region of electricity and gas 
using limited interaction information. Compared with the 
centralized optimization method, the calculation speed is 
faster, and the adaptive ability is stronger than the ADMM 
method. However, the solver is highly dependent on the 
model and cannot deal with uncertainty, which must be 
resolved repeatedly, and the solving speed cannot meet the 
real-time requirements [17]. Deep reinforcement learning 
is a model-free method independent of the knowledge of 
uncertain distribution. The algorithm has better self-adaptive 
learning and optimization decision-making abilities for non-
convex nonlinear problems [18-21]. The method for multi-
agent deep reinforcement learning (MADRL) provides a 
new idea for multi-energy coordinated optimization based 
on a multi-agent system. [22] divided the power grid into 
three regions as three different agents, and the multi-agent 
reinforcement learning algorithm has been utilized to realize 
the coordinated operation of the multi-area power grid. 
In [23], the reinforcement learning technology based on 
Nash-Q learning has solved the decision-making problem 
of multi-agents with different benefit objectives. In [24], 
under the uncertainty of renewable energy and loads, we 
adopted fuzzy Q to realize the reliable energy management 
of microgrids. Previous studies constructed the multi-agent 
of the power system, but for the IES, the dimensions of 
observations will rise sharply with the increase of the state 
quantity, and the multi-agent algorithm will not converge. 
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[25] constructed multi-park agents of electricity-gas IES, 
and adopted a data-driven multi-agent deep Q network to 
optimize the multi-park problem. Previous studies used 
the discrete Q reinforcement learning method based on the 
value function, however, this has some flaws when dealing 
with the continuous output problem of the unit. We must 
therefore investigate a multi-agent algorithm suitable for 
continuous action and simple to converge under high-
dimensional input.

This study constructs a distributed model for IES based 
on multi-EH for the coordinated optimization problem 
of the electricity-gas-heat IES and proposes a distributed 
optimization solution method for IES based on multi-agent 
deep deterministic policy gradient (MADDPG) [26]. By 
introducing the electrothermal dynamic distribution factor, 
the model can better realize multi-energy coordinated 
optimization and improve the economy of the system by 
considering the influence of energy market factors on 
system optimization. The centralized optimization problem 
for IES is transformed into a distributed optimization 
problem with multi-EH agents as the decision centers, 
which reduces the communication pressure of the system. 
The MADDPG method is adopted, and the uncertainties of 
the renewable energy and load are considered in the training 
process. The solving efficiency improves when the accuracy 
is ensured which benefits the online application.

The rest of the study is organized as follows. Section 
1 introduces the distributed optimization model of an 
electricity-gas-heat IES based on a multi-agent system. 
Section 2 discusses the multi-agent deep deterministic 
policy gradient methods in detail and designs the multi-
agent deep reinforcement learning model for IES distributed 
optimization. The practice results are analyzed in Section 3. 
Section 4 concludes the study.

1	 �Distributed optimization model of an 
electricity-gas-heat integrated energy 
system based on multi-energy hubs 

1.1	 System modeling

EH can be defined as an input-output port model that 
describes the exchange and coupling relationship among 
energy, loads, and networks in a multi-energy system, 
which is flexible for modeling the multi-energy system 
[27]. This study develops a distributed system of IES based 
on multiple EH, as shown in Fig. 1, to carefully consider 
the internal constraints of the system. If the system were 
separated into EH regions, for instance, each EH region can 
represent distributed energy that is dispersed throughout 
various geographical locations. The EH area corresponding 
to each geographical location is connected to the external 
energy network, and the corresponding renewable energy 
can be accessed within its internal area. For example, an EH 
has high-quality wind resources due to geographical location, 
so it can develop corresponding wind power generation 
and supply the loads in its area, to reduce the pressure of 
the external network and increase flexibility. Meanwhile, 
the internal EH must meet the demands of electrical and 
heat load. Therefore, each EH area gathers and integrates 
corresponding coupling facilities, which mainly represent 
the energy conversion process. The coupling facilities 
can be designed according to the resources allocated in the 
actual area, to complementarily use the energy obtained from 
various energy networks and renewable energy, and meet the 
demands of various loads through energy conversion.

The coupling facilities are located at a hub position that 
receives input and converts output in the EH area, which 
can comprehensively reflect all the operational states of 
the entire system. The facilities are highly flexible and 

Fig. 1  Schematic diagram of IES distributed structure based on multi-agents
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crucial for the system to operate. Therefore, the EH model 
represents the coupling facilities in this study. The model is 
built as follows:
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where α β γ, , ,  represent different types of energy. L and 
P are the output and input power of EH. C is the conversion 
coupling matrix, which describes the mapping of EH from 
input power to output.

The internal conversion facilities of EH studied are 
mainly composed of the transformer, CHP, heat exchanger 
(HE), and electric boiler (EB). We assume that in steady-state 
conditions, energy loss in EH agents only occurs in conversion 
facilities [28]. The specific model is built as follows:
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where subscript e g,  and h are the input types of electricity, 
gas, and heat. Superscripts represent the conversion 
facilities. The coupling matrix mainly represents the 
distribution, transformation, or transmission of energy. υ is 
the dynamic distribution factor, representing that all kinds 
of energy are allocated to different energy transmission 
or conversion facilities in a certain proportion. η is the 
efficiency factor of the facilities, representing that the input 
energy is transformed through mechanical and chemical 
channels with a certain conversion efficiency [1]. Le and 
Lh are the output electrical load and heat load from EH, 
respectively. Pnew represents photovoltaic or wind power.

Equation (2) represents the whole process from input to 
output of each EH area. Each EH area must purchase Pe, Ph 
and Pg from the three energy networks of electricity, heat, 
and gas, and then transmits or converts energy through the 
conversion facilities inside the area to meet the needs of Le 
and Lh at any time. Meanwhile, if there is renewable energy 
Pnew in the EH area, the corresponding energy purchase 
cost will be reduced, and the demands of Le and Lh can be 
met by Pnew. The electricity-heat distribution proportion 
depends on the dynamic distribution factor υ new. If Pnew 
is sufficient, there is no need to purchase power from the 
energy network. However, the surplus Pnew can be sold to 
the power grid for income. This study reflects the changes 
in real-time supply and demand by dynamic electricity 
prices. The system’s economics will be impacted by the 
combined uncertainties of renewable energy and the real-

time fluctuation of electricity prices. Therefore, the EH area 
can independently select the electricity-heat distribution 
proportion by comprehensively considering multiple factors 
such as Pnew and dynamic electricity price at each time.

In conclusion, as shown in the system, each EH area 
can select the dynamic distribution factor and the amount 
of energy interacting with energy networks by collecting 
its regional load demands, electricity price, and renewable 
energy. Therefore, the IES model can be transformed into 
a distributed optimization model with multiple EH regions 
as the decision center. This reduces the pressure of system 
communication and avoids centralized optimization from 
collecting global information. Through the distributed 
cooperation of multiple EH regions, the multi-energy 
complementary optimization of electricity-gas-heat IES can 
be realized.

1.2	 Objective function

The economy of regions where each EH agent is located 
is taken as the optimization objective. The cost of each 
EH agent is set as the cost of energy caused by the energy 
interaction between EH and energy networks. The objective 
function is expressed as follows:

                 F c P c P c P= + +min∑
i=

3

1
( e ei g gi h hi )  � (3)

where ce, ch, and cg are cost coefficients of the energy 
interaction between EH and distribution network, heat 
network, and gas network, respectively.

1.3	 Constraints

The equation constraints of the system mainly include energy 
networks and EH. EH constraints are shown in (2). Energy 
networks mainly include distribution, heat, and gas networks.
1.3.1	 Constraints for distribution network

The distribution network uses the AC model. For the 
entire network, the power obtained from the distribution 
network is equal to the sum of the power consumed by 
the load and net loss of the system. The constraints are 
expressed as follows:
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where PG i

E
,  and QG i

E
, are the active and reactive power 

obtained from the main network. PD i
E
,  and QD i

E
,  are the active 

and reactive power consumed by loads. Ne is the number 
of nodes of power distribution networks. U is voltage 
amplitude. G and B are conductance and susceptance, 
respectively. θij is the phase angle difference between node 
iand node j. Superscripts E, H, and G are distribution, heat, 
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and gas networks, respectively.
1.3.2	 Constraints for heat network

Centralized heating is adopted in the heat network, 
which mainly includes heat sources, transmission pipes, and 
heat loads.

The heat power at a node i is expressed as follows:
	                   P C m T Ti p q i s i o i

H = −, , ,( )                �  (5)
where Cp is the specific heat capacity of water.

 

mq i,  is 
water flow at a node i. Ts i,  and To,i are the temperatures 
before and after node i is injected.

The temperature relationship between the beginning and 
end of the pipe is calculated as follows:

                          T T T e Tj i a a= − ⋅ +( )
−

C m
λ

p ij

Lij

     �    (6)
where Ti and Tj are the temperature at the beginning and end 
of the pipe respectively. Ta is the ambient temperature. Lij is 
the pipe length from node i to node j. λ is the coefficient of 
heat conduction.

The relationship of mixing at nodes is calculated as follows:

                      
 
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∑ ∑
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m T m Tin j in j in k out k, , , ,=
 
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where min j,  is the flow from node j into node i, mout k,  is the 
flow from node i to node k. Tin j,  is the temperature when 
node j flows into node i. Tout k,  is the temperature when node 
i flows to node k.

In conclusion, the power balance equation of the heat 
network is expressed as follows:

		          P P Ps i i D i
H H H
, ,= +∑

i

N

=

h

1
            �(8)

where Ps i
H
,  is heat power for the heat source point. PD i

H
,  is the 

load power of heat. Nh is the number of nodes in the heat 
network.
1.3.3	 Constraints for gas network

The gas network mainly includes gas sources, transmission 
networks, compressors, and gas loads.

The flow of the transmission network is calculated as follows:
	                    f K s s

ij

G = −ij ij ij i j(π π2 2 ) � (9)
where f G

ij is the steady flow of the natural gas pipeline. π i and 
π j are the gas pressure of nodes i and j respectively. sij is a 
symbol vector, representing the flow direction of natural gas in 
the pipeline. Kij is the pipeline constant, calculated as follows:
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           � (11)

where µ is the efficiency parameter of the natural gas 
pipeline. MC is the friction coefficient. ZK is the gas 
compression factor. G is the relative density of natural gas. 
LK is the pipeline constant. TK is the average temperature of 

natural gas in the pipeline. DK is the inner diameter of the 
pipeline. C0 is a constant coefficient.

The compressor model adopts the method proposed in 
[29], as in Fig. 2 below:

Fig. 2  Schematic diagram of the compressor model

In Fig. 2, fcom is the flow into the compressor. fcp is the 
flow consumed by the compressor. fim is the flow at the 
compressor’s inlet. fnj is the flow of the compressor’s outlet. 
The specific model is built as follows:
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where kcp is the compression ratio of the compressor. 
qgas is the calorific value of natural gas. Tgas is the natural 
gas temperature, and a is the variable coefficient. After 
calculation by the above method, the flow of the pipeline 
containing the compressor can be equivalent to a load of 
adjacent nodes fc,i.

The flow balance equation of the gas network is 
expressed as follows:

		    f f f fs i ij c i D i
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where fs i
G
,

  
is the gas supply at the gas source node i, fD i

G
,

  
is 

the gas consumed by gas loads at a node i, and Ng is the 
number of nodes in the gas network.

In addition to the equality constraints in the energy network 
model, the following inequality constraints must be satisfied 
to ensure the safety and stability of the system operation:
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where PG i
E
,
,max and PG i

E
,
,min are the maximum and minimum 

active power obtained from the main network, respectively, 
and QG i

E
,
,max and QG i

E
,
,min are the maximum and minimum 

reactive power obtained from the main network, 
respectively. Pij

E ,max and Pij
E ,min are the maximum and minimum 

branch power of the distribution network, respectively. Ui
max 

and Ui
min are the maximum and minimum limits for the 

voltage of the node in the distribution network, respectively. 
π i

max and π i
min are the maximum and minimum air pressures 

of gas network nodes, respectively. fs i
G
,

,max and fs i
G
,

,min are 
the maximum and minimum limits for gas supply at the 
gas source nodes. fij

G ,max and fij
G ,min are the maximum and 

minimum flow in the gas network pipeline, respectively. 
Ps i

H
,

,max and Ps i
H
,

,min are the maximum and minimum heat 
capacity of the heat source nodes in the central heating 
network, respectively. Ti

max and Ti
min are the maximum and 

minimum limits of node temperature in the central heat 
network, respectively. υ new is the dynamic distribution factor.

In conclusion, equations (2) - (14) are the optimization 
model of an electricity-gas-heat IES based on multi-EH. The 
optimization problem presents the characteristics of strong 
coupling, non-convexity, and nonlinearity by introducing 
the dynamic distribution factor and considering the refined 
model of the energy network. Therefore, the traditional 
mathematical programming method is difficult to apply. 
The problem will then be solved using the multi-agent deep 
reinforcement learning algorithm.

2	� The design of multi-agent deep reinforce-
ment learning model for IES distributed 
Optimization dispatching 

Each EH area in the system is considered a decision-
making subject and is divided into agents (hereinafter 
referred to as EH agents). The IES optimization problem is 
transformed into a distributed optimization problem with 
EH agents as the decision centers. There are multiple EH 
agents in the system. If multiple single-agent algorithms are 
directly utilized, there is no interactive information among 
agents, and collaborative optimization cannot be completed. 
However, even if the information interface is established, 
for a single-agent algorithm, each EH agent interacts and 
affects the interaction of other EH agents as a part of the 
entire system. The environmental states are constantly 
changing, which will directly lead to the shaking and even 
collapse of training. Therefore, this study adopts the multi-
agent deep reinforcement learning method.

2.1	 MADDPG algorithm

The MADDPG algorithm is an extension of the deep 

deterministic policy gradient algorithm (DDPG) in multi-
agent [30]. Based on the actor-critic framework, each agent 
has an actor-network and a critic network. Different from 
DDPG, during training, each agent’s actor takes actions 
according to its state, and then the critic evaluates the actor’s 
actions. The actor updates its strategy according to feedback. 
Each critic obtains more accurate evaluation information by 
estimating the strategies of other agents. After training, each 
agent only needs to use an actor to take actions according 
to its state. Currently, there is no need to obtain information 
from other agents, and the decisions are completed by each 
agent independently. MADDPG obtains the optimal strategy 
through centralized training and only needs local information 
when applying it. Therefore, it is a mode of “centralized 
training and distributed execution”. A schematic diagram of 
the MADDPG algorithm is shown in Fig. 3.

In Fig. 3, the actor of agent i only needs to obtain its 
relevant state information si. ai is the action taken by agent 
i. ri is the reward earned. θi is the weight parameter of 
agent i. Suppose there are N agents, and the observation set 
x = (s s1, , N ) is the state information of all agents. The 
actor constantly updates its parameter θi to maximize the 
expected value of rewards, namely, to raise the assessed 
value of the critic. The rule for policy update of the actor is 
expressed as follows:
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where Q a ai N
µ (x, , ,1  )  is a centralized state-action 

value function. Qi
µ is learned and updated by each agent 

independently, so each agent can have any form of the 

Fig. 3  MADDPG algorithm diagram
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reward function. D a a r r= ( x x, , , , , , ,′ 1 1 N N )  is  the 
experience replay unit which stores the experience of all 
agents, and a group is randomly selected for training at each 
training. Simultaneously, to solve the problem that an agent 
is difficult to converge when choosing an action in action 
distribution in the continuous space, MADDPG adopts the 
continuously determined strategy set µ of N agents.

Critic mainly updates its parameters by minimizing the 
time difference error, and its loss function is expressed as 
follows:

	 L (θi i N) = −x x, , ,a r '
 
  (Q a a yµ (x, , ,  1  ) )2

�  (16)

such that
                 , , ,y r Q a a= +i iγ µ′ (x′ ′ ′

1


N ) a s' '
j j j=µ ( )�

where µ′ is the policy settings of the target network. γ ∈[0,1]  
is the discount factor.

Finally, the soft update mode is adopted by the target 
network to copy parameters from the valuation network 
periodically, shown as follows:

                            θ τ θ τθi i i′ ′= − +(1 )       � (17)
where θi′ is the target network parameter of agent i. τ is the 
soft update parameter, and τ ≤1.

In a multi-agent environment, agents interact with 
the environment, simultaneously causing an unstable 
environment for each agent. MADDPG proposed a strategy 
integration method, in which the strategy µi of agent i is 
composed of K sub-strategies, and only one sub-strategy 
µi

(k ) is utilized in each training episode so that the overall 
reward of the strategy set is the highest in the whole training 
process. Therefore, the actor’s final policy is updated to:

∇ =

 
 
 ∇ ∇

θi
(

θ µ

k

i i

)

(k k

J

) µ

e i(

i i i a i N
(k

µ

) (

)

a s Q a a

K
1

)


X

i

,a D

µi

i
k

( x, , ,1  )
a si i= ( ) ( )

   � (18)

2.2	 State Space

The state space of the system mainly includes the 
output of renewable energy Pnew (including wind Pwr or 
photovoltaic power Psr), electrical load Le, heat load Lh, 
electricity price ce, gas price cg, heat price ch, node voltage 
of power system U E, node pressure of natural gas system 
π G, and node temperature of heat system T H in each EH 
agent region, such that:

          S P P L L c c c U T= { wr sr e h e g h, , , , , , , , ,E G Hπ } � (19)

2.3	 Action space

The action space variables correspond to the control 
variables of the studied system [31]. In the system, each EH 
is considered as an agent. According to the EH model, as in 

(2), the action space variables include the power P P Pe h g, ,  
interacted between the agent and the energy networks and 
the dynamic distribution factor υ new, such that:

                           A P P P= { e h g, , ,υ new}          �  (20)

2.4	 Environment design

Each agent’s actor takes actions according to the state 
at this moment, interacts with the environment, obtains 
rewards, and transfers to the state. Critic evaluates this 
action, and the agent is guided to take action at the next 
moment. For this process, take the IES model (4)-(14) as 
the environment. After each agent takes action at each 
moment, we conduct the power flow calculation for the IES. 
The relevant states of nodes in the distribution network, 
heat network, and gas network are fed back to calculate the 
reward function and transferred to the next moment, and 
cycling in this way.

2.5	 Reward function

The algorithm’s reward function design is crucial and 
moderately impacts how well the algorithm converges. 
Therefore, the setting of the reward signal should be 
able to be transmitted to the target that the agent wants 
to accomplish, to guide the agent to improve the actions 
in the direction of maximizing the reward function. The 
opposite number of the objective function in the IES 
model represents an immediate reward for each agent. 
The optimization problem must meet the corresponding 
constraints. According to the constraints described in 
Section 1.2, if the corresponding variable does not meet 
the constraints, the penalty value rpush, together with the 
immediate reward, is set as the final reward function of the 
agent, such that:

	  	         R F r= +{ push}   � (21)
In conclusion, each EH agent firstly takes actions 

according to the observations of the load information, the 
output of renewable energy, and the dynamic electricity 
price in its area, that is, determines the dynamic distribution 
factor υ new and the power required to interact with the 
energy networks, and transfers to the next states at random. 
The critic network evaluates the joint actions taken by all 
actors, calculates the reward function, and then guides the 
actors to take better actions. By continuously learning the 
feedback process, the cost reaches the maximum and the 
penalty goes to zero (i.e., the cost is optimal when the constraint 
conditions are met). This completes the loop process.

2.6	 Algorithm process

The overall algorithm flow chart of a distributed 
optimization model for IES based on MADDPG is shown 
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in Fig. 4. The primary process of each agent is precisely the 
same when two agents are being optimized, for instance. In 
this figure, the blue line represents the synchronous process, 
and the red line represents the process of information 
interaction. The specific steps are as follows:

Step 1: Each agent initializes parameters synchronously. 
Set the period T for optimization dispatching and the 
number of training rounds M of each agent. The initial 
values are all set to one. At the initial stage, the agent 
network parameters are set as θi randomly.

Step 2: Initialize the environment. Load the IES system 
model into the environment and set the interface file for 
the state and action in the MADDPG algorithm, so that the 
power flow can be calculated in real-time according to the 
state action and the corresponding environment states can 
be fed back.

Step 3: Each agent interacts with the environment. Each 
agent observes the states si of its area and takes actions ai by 
its actor-network. After taking action, the agent exchanges 
the actions with other agents. Then, the critic network of 
each agent interacts with the environment according to the 
joint action (a a1 n ) and calculates the reward ri

 based on 

the feedback of the states in response. The agent transfers 
the state to the next moment and observes the state of the 
next moment, and (x a r x, , , ′) will be stored in experience 
replay unit D.

Step 4:  Update network parameters.  A set  of 

(x a r x(k k k k) , , ,( ) ( ) ′( ) ) under the policy k is randomly sampled 
from the experience replay unit D. The critic and actor 
parameters are updated according to (16) and (18), and the 
target network parameters are updated according to (17).

Step 5: Assess whether the current number of training 
rounds m reaches the set value M. if it reaches the set value, 
end the training, output, and save the results. If not, return to 
step 2 and start a new round of training.

3	 A case study 

This study uses a 6-node distribution network, a 6-node 
heat network, and a 5-node gas network. The three networks 
are coupled through the three regional EHs, forming the 
distributed optimization system of IES with three EH agents 
as shown in Fig. 5. In the power system, electricity can be 
obtained by nodes 5 and 6 from the main network. Node 1 
is the balance node. Nodes 2, 3, and 4 are nodes of electrical 
loads, and they are coupled with the gas network and heat 
network through EH as coupling nodes. In the gas network, 
the gas source node is set at node 4, and nodes 1, 2, and 3 
are nodes of gas loads. In the heat network, the heat source 
node is set at node 1, and nodes 4, 5, and 6 are nodes of heat 
loads. This study has three EH agents in the system. EH1 
is equipped with a wind power plant, and EH2 is equipped 
with a photovoltaic power station. EHs with wind power, 
photovoltaic, and no renewable energy are respectively 
corresponding to agents 1, 2, and 3.

Fig. 5  A case of distributed optimization system for IES 
with three EH agents
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In this study, considering the dual uncertainties of 
renewable energy and loads, uncertainties are added to input 
data during model training. Alternatively, during MADDPG 
training, each EH agent must acquire observable state 
data within its area. When reading renewable energy data, 
unknown data is superimposed on the obtained data, namely 
the fluctuation range, as shown in Fig. 6.

In Fig. 6, Ew and Es represent the fluctuation range of 
wind power and photovoltaic power, which obey the normal 
distribution. Therefore, we ensured that regardless of how 
many rounds of training, the renewable energy data obtained 
each time are different, but they are both within the range. 
The size of the fluctuation range can be adjusted flexibly, 
and the loads are processed the same as renewable energy.

The optimization time takes 24 hours. The related 
parameters of the system, internal parameters of the agents, 
load data of each area, and the output data of renewable 
energy can be seen in the appendix.

3.1	� Parameter Sett ings of MADDPG and 
Analysis of Training Results

3.1.1	 Parameter settings
The MADDPG algorithm is written based on the 

Tensorflow framework. The actor and critic network 
parameters of the three agents are similar. Specific 
parameter settings in this model are shown in Table 1.

Table 1  Model-specific parameter settings

Parameters Critic Actor

Learning rate 0.00001 0.00003

Soft update coefficient 0.01 0.01

Number of layers of neural network 3 3

Number of neurons per layer 64 64

Activation function of hidden layer ReLu ReLu

Activation function of output layer / Sigmod

Number of episodes 2000 2000

The number of times per episode 24 24

Size of experience replay unit 100000 100000

3.1.2	 Analysis of training results
The training for the multi-agent reinforcement learning 

optimization model is conducted for the IES above. During 
training, the random method is used to explore the action 
space. The standard deviation of the action is taken as the 
random quantity. The random quantity is simultaneously 
applied when selecting the action, to ensure a larger 
exploration space and avoid falling into local optimization. 
There are 2000 rounds of training iterations, and the training 
results are shown in Fig. 7 below.

In Fig. 7, the agent begins in the exploration stage. With 
the increase of training episodes, the agent has converged 
at 750 episodes. Fig. 8 shows the result of the penalty value 
of the agent. The penalty value of the agent becomes 0 
around 700 episodes, and then the overall reward of the 
agent converges around 750 episodes. The agent gradually 
converges to the optimum after satisfying the constraints. In 
addition, due to the uncertainty of renewable energy and the 
different training samples each time, the reward value has a 
certain fluctuation after reaching convergence.

3.2	 Analysis of optimization dispatching results

To compare the impact of introducing dynamic 
distribution factors on system optimization, different 
scenarios are set as follows:

1) 1: the renewable energy in each agent area in the 
system can supply heat load through electricity to heat 
transfer, that is, the renewable energy in this area gives 

(a) Wind power output

(b) Photovoltaic output

Fig. 6  Outputs of wind power and PV
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priority to meeting its regional load demand, and the excess 
power will be returned to the power grid.

2) Scenario 2: renewable energy in each agent area 
in the system can change the electricity-heat distribution 
proportion at any time according to the dynamic electricity 
price, that is, the dynamic distribution factor is introduced 
as υ new.

The optimization results of agent MADDPG are shown 
in Fig. 9 (a) and 9 (b). Since there is no renewable energy 
set in agent 3’s area, agents 1 and 2 are taken as examples 
for analysis. From the comparison of optimization results 
of scenarios 1 and 2, the electricity-heat distribution 
proportion of renewable energy in the agent area in scenario 
1 cannot change in real-time with the electricity price. 
After renewable energy meets the demands of the regional 
electric load, the excess electricity is supplied to the heat 
load through electricity conversion. If there is more excess 
electricity, it will be sent back to the power grid. In scenario 
2, in the agent 1 area, from 4:00 to 9:00, the heat loads 
demand increases. Wind power is no longer fully supplied 

to the electrical loads. υ newdecreases accordingly, and 
part of the heat loads will be supplied through the electric 
boiler. Currently, the electricity price is relatively low, and 
part of the electrical loads can obtain electricity from the 
power grid to meet the demands. From 10:00 to 19:00, the 
electricity price increases, and υ new increases accordingly. 
The wind power meets the demand of electricity load, and 
the surplus wind power is sent back to the grid for income. 
After 20:00, the electricity price drops and υ new is reduced 
accordingly. In agent 2’s area, the changing trend of υ new is 
similar to that of agent 1. From 5:00 to 9:00, the demands 
of heat loads increase and υ new is small. From 10:00 to 
19:00, the electricity price is the highest and υ new gradually 
increases. We obtain income by returning electric energy to 
the power grid. Table 2 shows the total cost of optimization 
dispatching in scenarios 1 and 2. The cost of scenario 2 is 
20.6 % lower than that of scenario 1. In scenario 2, due to 
the consideration of the energy price factor, the agent adjusts 
the electricity-heat distribution proportion of renewable 
energy in real-time according to the change in supply and 
demand and reasonably distributes renewable energy. The 
economy of the system is improved while meeting load 
demands.

(a) Optimization results of agent 1
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Fig. 7  The overall reward value of the agent
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Table 2  Cost comparison under different scenarios

Scenarios Scenario 1 Scenario 2

Costs(k¥) 31.465 24.985

To improve the model’s ability to deal with uncertainty 
and make the system able to deal with large fluctuations 
of renewable energy, various samples of renewable energy 
output data are used for MADDPG algorithm training. 
Taking Agent 1 as an example, typical wind power data for 
a certain day is selected during the test, and the optimization 
results are shown as follows:

In Fig. 10, the policy of actions is the total power 
interacting with the energy networks. The trend of the policy 
curve (blue line) is consistent with that of the total load 
curve (orange line) minus the renewable energy curve (green 
line). For large fluctuations in renewable energy output, 
through the MADDPG algorithm, the trained model can 
generate a reasonable optimization policy in a short period 
of time without re-calculation like the traditional method.

3.3	 Comparative analysis

3.3.1	� Comparison with the traditional centralized 
solution

To further compare the optimization performance of 
multi-agent deep reinforcement learning and traditional 
centralized solution methods, the proposed method is 
compared with the traditional mathematical programming 
method, which uses the solver IPOPT for unified solutions. 
Table 3 shows the comparison results.

Table 3  Comparison of different methods

Algorithm Costs(k¥) Time(s)

IPOPT 23.571 6.19

MADDPG 24.985 0.03

The IPOPT centralized solution and MADDPG 
distributed solution results, which are compared, show no 
variation in the overall power cost between the three agents 
and the energy network, demonstrating the viability and 
effectiveness of the proposed approach.

From the comparison results of solution time, it can be 
seen that there are many optimization variables for solving 
the IES model, which belongs to a high-dimensional non-
linear non-convex problem. It is difficult to solve with an 
IPOPT solver, so the solving time is long, and the load 
data need to be recalculated after changing. The MADDPG 
algorithm takes a long time to train, but after the model 
training, the optimization strategy can be given in the second 
level during the test, and there is no need to retrain the model.
3.3.2	� Comparison with the deep reinforcement 

learning method
MADDPG is a deep reinforcement learning method 

in a multi-agent environment. To further compare with 
the single-agent deep reinforcement learning, the DDPG 
method is utilized to compare under the same uncertainty of 
renewable energy. The results are as follows:

Table 4  Comparison of different methods

Algorithm Costs(k¥) Time(s)

DDPG 25.802 0.04

MADDPG 24.985 0.03

From the comparison results, we conclude that both 
DDPG and MADDPG methods belong to intelligent 
algorithms with short execution times and can give nearly 
real-time decisions. However, the DDPG method takes all 
control variables as the agent’s actions, causing a sudden 
increase in the action dimension of the single agent. Fig. 11 
shows that DDPG training converges in 1100 rounds. Due 
to the slow convergence speed of the training procedure 

Fig. 10  Optimization results of agent 1 in the extreme scenario
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compared to the MADDPG approach and the poor 
learning performance of the single-agent algorithm after 
convergence (Table 4), MADDPG is preferable in complex 
environmental issues.
3.3.3	 Comparison under different working modes 

In Section 3.2, each agent sets the same reward function, 
which takes the optimal overall economy of the system as 
the objective function. The agents are in a cooperative mode 
and conduct collaborative optimization as a whole. For the 
MADDPG algorithm adopted in this study, each agent has a 
centralized critic independently, so different agents can have 
any form of the reward function. To compare the effects of 
different working modes of agents on the system, scenario 3 
is set based on scenario 2 as follows:

Each agent i sets a reward function separately, and the 
cost is expressed as:

               F c P c P c P i= + + =min( ), 1, 2,3e ei g gi h hi � (22)
For each agent, only the economy of its region is 

considered in the reward function and each agent changes 
from the cooperative mode to the competitive mode. The 
cost comparison results are shown in Table 5：

Table 5  Overall cost comparison under different working 
modes of agents

Scenarios Scenario 2 Scenario 3

Costs(k¥) 24.985 28.709

Table 5 shows the overall cost comparison results, which 
shows that in scenario 2, the agents are cooperative and 
primarily focus on the optimal overall economy. While in 
scenario 3, the agents are in the competitive mode, mainly 
considering their interests, which will increase the overall 
cost of the system.

4	 Conclusion 

For the optimization problem of IES with multi-EH, 
different EHs are divided into different agents in this 
study. Based on the MADDPG algorithm, a distributed 
optimization model with EH agents as the decision center is 
built to realize the distributed optimization of IES coupled 
with multi-EH. The conclusions are as follows:

1) The distributed optimization model with multi-
EH as the decision center can overcome the problems 
of centralized optimization, such as the need to collect 
a large amount of information and complex modeling. 
The distributed solution method proposed can effectively 
improve the solution speed of the model when the results 
are almost similar to those of centralized optimization, 
which is conducive to the online application of the model.

2) The dynamic distribution factor is introduced into the 
model so that the randomness of renewable energy output 
can be self-adaptively learned to obtain the optimization 
dispatching results, which effectively improves the economy 
of the system considering the real-time supply and demand 
changes.

3) Leveraging MADDPG’s characteris t ics  of 
“centralized training and distributed execution”, the 
coordinated optimization policy of IES is corresponding to 
the interaction mechanism between EH agents. The training 
process considers the dual uncertainties of renewable energy 
and load. The trained model can deal with uncertainty and 
realize nearly real-time decision-making.

Appendix A

Table A1  Internal parameters of the agents

Index ηee ηeh
EB   υ ηCHP CHP

ge  (1 )−υ ηCHP CHP
gh ηhh

HE

Agent1 1.0 0.85 0.35 0.45 0.95

Agent2 1.0 0.85 0.35 0.45 0.95

Agent3 1.0 0.85 0.35 0.45 0.95

Table A2  Parameters of heating pipeline

Index From To Length(m) Diameter(m)

Pipe1 1 2 3500 0.8

Pipe2 2 3 2334 0.8

Pipe3 3 4 1167 0.8

Pipe4 2 5 1167 0.8

Pipe5 3 6 1167 0.8

Table A3  Parameters of heating node

Index Node1 Node2 Node3 Node4 Node5

Ts(℃) 100 100 100 100 100

To(℃) 50 50 50 50 50

Table A4  Parameters of gas pipeline

Index From To Length(km) Diameter(mm)

Pipe1 5 1 20 890

Pipe2 4 2 20 1100

Pipe3 2 5 20 890

Pipe4 2 3 20 1100

Table A5  Parameters of nodes in gas network

Index π i
max(kPa) π i

min(kPa)

Node4 3 3
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Table A6  Parameters of a distribution network branch

Branch From To X(p.u.)

Line1 1 5 0.170

Line2 1 3 0.258

Line3 3 2 0.197

Line4 2 6 0.140

Line5 5 4 0.037

Table A7  Network parameters

Parameters value

µ 1

MC 0.01

ZK 0.92

G 0.589

TK 293K

a 1.3

Tgas 288K

Cp 4182[J/(Kg·k)]×10−6

λ 2

Table A8  Loads in different periods

Time(h)
agent1-Le

(kW)
agent2-Le

(kW)
agent3-Le

(kW)
agent1,2,3-

Lh(kW)

1 0.7306 0.1392 0.0417 0.582

2 0.7026 0.0364 0.0545 0.599

3 0.6986 0.0288 0.0416 0.607

4 0.7088 0.025 0.049 0.615

5 0.7573 0.026 0.0806 0.652

6 0.8617 0.139 0.0432 0.738

7 0.8728 0.2968 0.0562 0.798

8 0.8647 0.4045 0.0777 0.805

9 0.8638 0.3747 0.1907 0.785

10 0.9008 0.1081 0.2093 0.732

11 0.9431 0.1084 0.258 0.669

12 0.9525 0.3667 0.2544 0.622

13 0.947 0.3582 0.2602 0.605

14 0.9409 0.1482 0.2611 0.595

15 0.9516 0.162 0.2881 0.585

16 0.9789 0.1184 0.284 0.585

17 0.9509 0.1391 0.3448 0.595

18 0.9055 0.3598 0.5071 0.605

19 0.959 0.545 0.7171 0.615

20 0.9499 0.7448 0.886 0.629

21 0.9084 0.8328 0.8468 0.632

22 0.9073 0.7064 0.8943 0.629

23 0.8407 0.3684 0.535 0.619

24 0.7905 0.1901 0.1986 0.595
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