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Abstract: Wind power, solar power, and electrical load forecasting are essential works to ensure the safe and stable 
operation of the electric power system. With the increasing permeability of new energy and the rising demand response 
load, the uncertainty on the production and load sides are both increased, bringing new challenges to the forecasting 
work and putting forward higher requirements to the forecasting accuracy. Most review/survey papers focus on one 
specific forecasting object (wind, solar, or load), a few involve the above two or three objects, but the forecasting objects 
are surveyed separately. Some papers predict at least two kinds of objects simultaneously to cope with the increasing 
uncertainty at both production and load sides. However, there is no corresponding review at present. Hence, our study 
provides a comprehensive review of wind, solar, and electrical load forecasting methods. Furthermore, the survey of 
Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript. Challenges and 
future research directions are discussed at last.
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0 Introduction

To deal with climate change, environmental pollution, 
and fossil energy shortage, the energy systems of major 
countries are in a period of clean, low-carbon, and intelligent 
transformation; the structure of the generation side and load 
side of the power systems are changing significantly.

On the generation side, a high proportion of renewable 
energy is becoming the critical characteristic of the future 
power system. Wind and solar energy, which with strong 
volatility, will become the main power supply [1]. Europe 

Scan for more details
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[2] and the United States [3] put forward the blueprint of 
realizing 100% and 80% renewable energy power systems 
in 2050, respectively. On the load side, intelligent power 
consumption is an essential component of the smart grid. At 
present, the United States, Britain, France, Japan, Finland, et 
al. have already implemented the demand response projects, 
including load response and price response [4], [5]. 

The increase of wind power and solar power penetration 
rate on the generation side and the gradual implementation 
of the demand response on the load side lead to the power 
system having strong uncertainty at both sides, which brings 
greater challenges to the safe and economic operation of the 
system. 

Renewable energy and load forecasting is an important 
work to deal with the dual uncertainty of the power system 
[6], [7]. Wind and solar power forecasting are the significant 
basis to ensure the safe and stable operation of the power 
system with a high proportion of new energy [8], [9]. From 
the perspective of the power station, accurate forecasting 
results can improve its operation and maintenance level, 
reduce the energy curtailment rate, and improve its market 
competitiveness. From the perspective of the power 
system, reliable forecasting results can effectively reduce 
the adverse effects of wind and solar power uncertainty, 
help the dispatching department formulate and adjust the 
dispatching plan in time, and reduce the operation cost. 
Load forecasting is the prerequisite to balancing the power 
supply and demand, which plays a key role in the planning 
and operation of the power system. Accurate and reliable 
forecasting results are of great significance to the dispatch, 
maintenance, emergency management, and power flow 
analysis of the power system [10], [11]. 

There are a lot of research works published regarding 
wind power, solar power, and load forecasting, and several 
review/survey articles have been presented. Most review/
survey articles focus on a specific forecasting object (wind, 
solar, or load) [9], [12], [13]. A few involve the above two 
or three forecasting objects, but they are reviewed separately 
[14], [15].

Actually, wind power, solar power, and electrical load 
are closely related to meteorological factors such as wind 
speed, temperature, irradiance, and relative humidity. They 
all have a certain interactive coupling relationship under 
different operation scenarios of the power system. The per-
unit wind power and solar power data in 2016, and typical 
year’s per-unit electric load data in all provinces of China 
(excluding Hong Kong, Macao, Taiwan, and South China 
Sea Islands) are used to further illustrate the correlation 
between wind power, solar power, and electrical load. 
Pearson correlation coefficient (ρp) is used to quantify the 

correlation between variables, as shown in Fig. 1. 

(a) wind power and solar power

(b) wind power and electrical load

(c) solar power and electrical load

Fig. 1 Correlation of wind power, solar power, and electrical load

As can be seen, 1) wind power and solar power basically 
have a negative correlation in different provinces, and the 
correlation in Northern China is generally higher than that in 
Southern China. This is mainly due to the flatter terrain and 
the higher meteorological similarity in adjacent locations 
in Northern China. 2) Wind power and electrical load 
negatively correlate in most provinces, but the correlation is 
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weaker than the correlation between new energy and load. 
This is because the correlation between wind speed and 
irradiance, irradiance and load are higher than that between 
wind speed and load. 3) Solar power and electrical load 
basically show a positive correlation in different provinces, 
and the correlation in Southern China is generally higher 
than that in Northern China. This is mainly due to the lower 
temperature and the broad utilization of coal (or natural gas) 
for heating in Northern China. 

The forecasting accuracy can be effectively improved 
if this relationship is considered. Some articles predict at 
least two kinds of objects simultaneously to cope with the 
increasing uncertainty at both production and load sides. 
However, there is no corresponding review at present. 
Aiming at this problem, our study provides a comprehensive 
review of wind power, solar power, and electrical load 
forecasting methods. 

The main contributions of this paper are as follows. 
1) A bird’s eye view of wind, solar, and electrical load 

forecasting articles is provided. 
2) A survey of Numerical Weather Prediction (NWP) 

wind speed/irradiance correction is provided. NWP is 
the most critical factor affecting wind and solar power 
forecasting accuracy, especially under the short-term time 
scale. It is necessary to correct the NWP wind speed/
radiation before wind power and solar power forecasting.

3) An exhaustive review of wind power, solar power, 
and electrical load forecasting is provided. Different from 
the review papers, which only focus on a specific type of 
forecasting methods, such as deep learning methods [15], 
support vector machine models [14], ensemble methods 
[6], et al., all forecasting methods are considered in this 
manuscript. The existing forecasting methods are divided 
in terms of different classification criteria. Furthermore, 
the applicable scenarios, advantages, and disadvantages of 
different forecasting methods are also described.

4) A survey of wind power-solar power-electrical load 
forecasting methods is provided. There is no corresponding 
paper at present. 

The rest of the manuscript is organized as follows. 
Section 1 provides a bird’s eye view of SCI articles about 
wind, solar, and load forecasting, and highlights our 
contributions. Section 2, Section 3, and Section 4 offer 
a complete summary of NWP wind speed/irradiation 
correction, wind power/solar power forecasting, and 
electrical load forecasting from different perspectives. 
Section 5 describes the existing forecasting methods of wind 
power-solar power-electrical load. The current challenges 
and future research directions are discussed in Section 6. 
Section 7 concludes the review. 

1 A Bird’s eye view 

A bird’s eye view of wind, solar, and electrical load 
forecasting articles is shown in this section. The view 
mainly focuses on the papers indexed by SCI during 2011- 
2020. 

First, we performed a keyword-based search of research 
studied using Web of Science; the keywords are listed in 
Table 1.

Table 1 Keywords for wind, solar, and electrical load forecasting

Forecasting 
objects

Keywords

wind wind power/wind speed 

+forecasting
/prediction

solar solar power/irradiance 

load electrical load/electricity demand

wind & solar
renewable energy/wind solar/wind 

irradiance

wind & load
wind power/wind speed + 

electrical load/electricity demand 

solar & load
solar power/irradiance + electrical 

load/electricity demand

wind & solar & 
load

wind power/wind speed + solar 
power/irradiance + electrical load/

electricity demand;
renewable energy + electrical load/

electricity demand

Then, we performed a preliminary screening of the 
retrieved research papers found through the previous step. 
The screening criteria for papers are related to wind, solar, 
or electrical load forecasting, and indexed by SCI. The 
number of SCI publications about wind, solar, and load 
forecasting during 2011-2020 is depicted in Fig.2. As shown 
in these two figures, while the number of prediction articles 
is increasing annually, more and more scholars are paying 
attention to predict least two objects simultaneously.

The countries and research institutions that published 
papers in SCI-Q1 journals during 2011-2020 are paid 
more attention, as shown in Fig. 3 and Table 2. As can be 
seen, China has published the largest number of papers in 
new energy and load forecasting (accounting for 43.7%), 
followed by USA (accounting for 14.3%). In terms of the 
published number, the following institutions deserve more 
attention: Central South University, Dongbei University of 
Finance & Economics, Huazhong University of Science &  
Technology, Lanzhou University, North China Electric 
Power University, Tsinghua University, et al. in China; 
Southern Methodist University, United States Department 
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of Energy, et al. in USA; Yildiz Technical University in 
Turkey; Nanyang Technological University, National 
University of Singapore in Singapore; INESC in Portugal; 
Technical University of Denmark in Denmark.
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(b) for at least two forecasting objects

Fig. 2 Number of SCI publications about wind, solar, and 
load forecasting in 2011-2020

Fig. 3 A classification of SCI-Q1 publications about wind, solar, 
and load forecasting in 2011-2020 (from perspective of country)

Others
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Finally, the review/survey articles with higher citation 
rates are further focused. A comparative analysis of our 
work and existing review/survey studies is listed in Table 
3. As can be seen, there is no survey/review of wind, solar, 
and load forecasting articles that consider the coupling 
relationship among prediction objects. 

Table 2 A classification of SCI-Q1 publications about wind, 
solar, and load forecasting in 2011-2020 

Country Institution Num. Pro.

China

Central South University 26 4.4%

Chinese Academy of Sciences 6 1.0%

Chongqing University 5 0.9%

City University of Hong Kong 7 1.2%

Dongbei University of Finance & 
Economics

21 3.6%

Guangdong University of Technology 6 1.0%

Hefei University of Technology 5 0.9%

Huazhong University of Science & 
Technology

16 2.7%

Hunan University 5 0.9%

Lanzhou University 12 2.0%

North China Electric Power 
University

20 3.4%

Tianjin University 8 1.4%

Tsinghua University 12 2.0%

University of Electronic Science & 
Technology of China

6 1.0%

Xi'an Jiaotong University 5 0.9%

Others 97 16.5%

Total 257 43.7%

USA

Southern Methodist University 9 1.5%

United States Department of Energy 11 1.9%

University of California System 7 1.2%

University of North Carolina 6 1.0%

University of Texas System 7 1.2%

Others 44 7.5%

Total 84 14.3%

Turkey

Yildiz Technical University 5 0.9%

Others 13 2.2%

Total 18 3.1%

Singapore

Nanyang Technological University 6 1.0%

National University of Singapore 5 0.9%

Others 2 0.3%

Total 13 2.2%

Portugal

INESC 6 1.0%

Others 5 0.9%

Total 11 1.9%

Denmark

Technical University of Denmark 7 1.2%

Others 2 0.3%

Total 9 1.5%

Others 196 33.3%
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2  NWP wind speed/irradiation correction

NWP model is composed of a set of basic differential 
equations that can describe the physical laws of the 
atmosphere. NWP predicts future atmospheric states based 
on the current weather conditions, including initial values 
and boundary conditions. The maximum prediction time 
scale is 15 d [29]. NWP can be divided into global NWP 
and mesoscale NWP according to the prediction range. The 
global NWP model operates at about 15 meteorological 
service stations, e.g., Global Forecast System (GFS) and 
European Centre for Medium-Range Weather Forecasts 
(ECMWF). The temporal and spatial resolution is generally 
3-6 h and 16-50 km, respectively. The mesoscale NWP 
model takes the outputs of the global NWP model as inputs 
and predicts the future atmospheric state by considering the 
characteristics of different regions, e.g., Fifth-Generation 
Mesoscale Model (MM5) and The Weather Research 
and Forecasting Model (WRF). The mesoscale NWP has 
a higher temporal and spatial resolution, the temporal 
resolution is usually 10 min-1 h, and the spatial resolution is 
usually 3-20 km, even up to 1 km [21].

NWP can provide the meteorological data required 
for wind power and solar power forecasting, such as wind 
speed, irradiance, temperature. However, the low temporal 
and spatial resolution of NWP leads to its low prediction 
accuracy. The cubic relationship between wind speed and 
wind power, and the approximately linear relationship 
between irradiance and solar power make tiny NWP 
prediction errors can cause huge power forecasting errors 
[30], [31], [32]. Therefore, it is necessary to correct the 
NWP wind speed/radiation. The studies can be divided into 
NWP correction at a single location and NWP correction 
considering the spatial coupling characteristics according to 
the inputs of the correction model, i.e., the spatial range of 
NWP data.

2.1 Correction at a single location

This category corrects the NWP wind speed/irradiance 
by establishing the mapping relationship between the NWP 
and measured data at a specific location. The spatial location 
of the NWP data is single [33], [34].

Liu et al. established the frequency distribution model 
of NWP wind speed error based on non-parametric kernel 
density estimation, and corrected the wind speed through 
historical prediction error [35]. Zheng et al. used the Kalman 
filtering method to correct NWP wind speed in the next 16 
steps. The Mean Absolute Error (MAE) of wind speed at 
step 16 is reduced by 0.47 m/s, compared with the original 
NWP [36]. Hu et al. proposed a hybrid NWP wind speed 

correction model based on Principal Component Analysis 
(PCA) and improved Deep Belief Network (DBN). The 
improved DBN can automatically adjust the learning step 
to improve the convergence speed of the algorithm. The 
NWP wind speed correction accuracy is increased by 16% 
and 30% by using the improved DBN model and the hybrid 
model, respectively, compared with the traditional DBN 
[37]. Wang et al. proposed a Sequence Transfer Correction 
Algorithm (STCA) for NWP wind speed; the sequence 
transfer relationship is introduced to improve the certainty 
between inputs and outputs of the correction model. Then, 
5 NWP corrected models based on STCA are established, 
respectively, by using Linear Regression (LR), Support 
Vector Machine (SVM), Back-Propagation Neural Network 
(BPNN), Random Forest (RF), and Radial Basis Function 
Neural Network (RBFNN). The NWP accuracy is improved 
by 0.20-2.25 m/s in two wind farms [38].

Lopes et al. established two models to correct NWP 
irradiance based on the NWP data and ground observation 
results of two years, including a linear regression model 
between NWP and measured irradiance; a multiple 
regression model among NWP irradiance, other NWP 
variables (temperature, relative humidity, wind speed, total 
precipitation) and measured irradiance [39]. Reikard et al. 
proposed an Autoregressive Integrated Moving Average 
model (ARIMA) with the time-varying coefficient based on 
the physical characteristics reflected in the weather model to 
correct the NWP irradiance. The proposed model can adapt 
to the changing atmospheric conditions. The results show 
that the corrected NWP irradiance has a great advantage 
under the time scale of 1-4 h, compared with the original 
NWP irradiance and the forecasted irradiance using the time 
series method [40].

Some scholars aimed at the characteristic that the 
mapping relationships between NWP and measured data 
are different under different weather conditions [41], [42]. 
The weather conditions are classified according to weather 
factors such as wind speed, wind direction [43], irradiance, 
clear sky index [44], atmospheric stability [45], seasons [46], 
[47]; or by using the clustering, reduced-scenario methods 
[48]. Then, the NWP correction model in each weather 
condition is established to improve the correction accuracy.

Some scholars corrected the NWP data from the 
perspective of frequency domains. First, the measured and 
NWP wind speed/irradiance series is decomposed into 
different frequency domains. Then, the mapping relationship 
between measured and NWP data is established in each 
frequency domain. Finally, the results in different frequency 
domains are combined to obtain the correction results 
of NWP data [49]. The commonly used decomposition 
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methods include Empirical Mode Decomposition (EMD), 
Variational Mode Decomposition (VMD) [50], Wavelet 
Decomposition (WD) [51], etc.

2.2  Correction considering spatial coupling 
characteristics

This category considers the coupling relationship among 
wind speed/irradiance at different spatial locations, i.e., 
when correcting the NWP at one location, in addition to the 
NWP and measured data at that location, the information in 
the adjacent area is also taken into account. The NWP wind 
speed/irradiance is corrected by establishing the mapping 
relationship among NWP data at multiple points and 
measured data at a single point, or the mapping relationship 
among NWP and measured data at multiple points [39], [52].

Cai et al. established the corresponding relationship 
among the NWP and measured wind speed at different 
points by SVM to obtain the reference NWP wind speed 
series. Then they corrected the NWP through the multi-
task Gaussian process [53]. Chu et al. first calculated the 
correlation coefficient between the measured wind speed 
series at the location of the wind turbine and the NWP wind 
speed series at each spatial point, respectively. Then, the 
NWP series with higher correlation are selected as inputs to 
correct the NWP by the proposed variable weight combined 
method [54]. Yan et al. established an NWP correction 
model with multiple inputs and multiple outputs based on 
the stacked denoising autoencoder, which can consider the 
spatial coupling characteristics of wind speed. The proposed 
model can improve the correction accuracy by 15% and 
18%, respectively, compared with the neural network and 
SVM with single input and output [55].

3  Wind power/solar power forecasting

Wind and solar power forecasting methods can be 
divided in terms of different classification criteria. The 
forecasting can be divided into physical and statistical 
forecasting according to the modeling principle; ultra-short-
term, short-term, and mid-long-term forecasting according 
to the temporal scale; station and regional forecasting 
according to the spatial scale; deterministic and uncertain 
forecasting according to the displaying ways of results. 

3.1 Physical method and statistical method

The wind power physical forecasting method first 
establishes the computational fluid dynamics model to 
calculate the wind condition at the hub height of each wind 
turbine with the initial NWP, which considers the impact of 
terrain, altitude, and surface roughness changes. Then, the 

wind speed is converted into wind power through the speed-
power curve, and the wind farm output is calculated by 
adding each wind turbine output [56]. The physical method 
can be subdivided into the analytical diagnosis method [57] 
and the numerical simulation method [58], [59].

The solar power physical forecasting method first 
establishes the solar radiation transfer equation, the 
photovoltaic module operation equation, etc., to calculate 
the output of each photovoltaic array with the initial NWP, 
which considers the geographic information of the solar 
power station and module parameters. Then, the solar power 
station output is calculated by adding each photovoltaic 
array output [60], [61], [62].

The statistical forecasting method establishes the 
mapping relationship among the operation data series or 
the mapping relationship between the operation data and 
NWP data of the wind/solar power station, and the power 
is forecasted based on the mapping model. It can predict 
the wind/solar power directly; or predict the wind speed/
irradiance and other meteorological information first, 
then convert them to power [63]. The commonly used 
methods include ARIMA, Kalman filter, SVM, Relevance 
Vector Machine (RVM), Least Square method (LS), RF, 
Artificial Neural Network (ANN), Deep Learning (DP), and 
combined method, etc. [26], [64], [65], [66].

The physical method does not need much historical data 
and is suitable for new wind/solar power stations. However, 
the complexity of the model increases exponentially with 
the area and the forecasting accuracy, which requires a lot 
of time and computing resources. The application scope of 
the physical method usually concentrates inside the power 
station. The statistical method can be applied to power 
forecasting in single and regional power stations, but it 
needs a large number of historical data to dig the mapping 
laws of series. It is more suitable for wind/solar power 
stations that have been built for some time.

Wind power/solar 

power forecasting 

methods

Modeling principle

Temporal scale

Spatial scale

Results displaying ways

Physical forecasting

Statistical forecasting

Ultra-short-term forecasting

Short-term forecasting

Mid-long-term forecasting

Station forecasting

Regional forecasting

Deterministic forecasting

Uncertain forecasting

Fig. 4 Classification of wind power/solar power forecasting methods
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3.2  Ultra-short-term, short-term, and mid-long-
term forecasting

Ultra-short-term wind/solar power forecasting provides 
the results of power stations in the next few hours, generally 
within 4 h [67]. The forecasting results can be used for 
online economic dispatching, rotating reserve capacity 
optimization, power tracking, etc. The ultra-short-term wind 
power forecasting is usually based on the statistical laws 
among historical data series [68], [69]. The meteorological 
factors, spatial correlations, etc., can also be considered to 
improve the forecasting accuracy [70]. For the solar plant, 
in addition to the above methods, the ultra-short-term 
forecasting results can be obtained through the cloud image 
[71], [72]. This method forecasts the shielding of the cloud 
to the sunlight by calculating the cloud movement path. The 
commonly used cloud images include ground-based and 
meteorological satellite images.

Short-term wind/solar power forecasting is usually 
based on wind speed, irradiance, and other meteorological 
data provided by NWP [73]. The forecasting is performed 
by establishing the mapping relationship between NWP 
data and actual power data, and the prediction time scale 
is generally 6 h-3 d [74], [75]. The forecasting results can 
provide effective support for the formulation and adjustment 
of maintenance plans for stations, and the formulation of 
day-ahead dispatching plans for the electric power system. 
The forecasting results are directly affected by NWP 
accuracy. Therefore, how to improve the NWP accuracy 
is crucial for reducing the power forecasting error in short-
term new energy forecasting.

Mid-long-term wind/solar forecasting is generally aimed 
at power generation or wind speed/irradiance, and the 
prediction time scale is usually months, quarters, and years 
[19]. The forecasting results are usually applied to arrange 
major maintenance, power system planning, site selection of 
wind and solar power stations, etc.

3.3 Station and regional forecasting

The station and regional forecasting refer to the output 
forecasting of a single wind/solar power station and multiple 
power stations in an area. The regional forecasting can 
forecast the total power directly; or forecast the predictable 
stations in the region first, and then use the direct 
superposition method or the statistical upscaling method to 
obtain the prediction results of the total power [76], [77].

T h e  d i r e c t  s u p e r p o s i t i o n  m e t h o d  a d d s  t h e 
forecasting results of each station to obtain the regional 
power forecasting results. The calculation method is 
straightforward, but the regional power forecasting 

accuracy is greatly affected by the forecasting results of 
each station, and all stations in the area are required to be 
predictable objects. The regional power forecasting results 
are unavailable if the forecasting results of any station are 
missing.

The statistical upscaling method establishes the mapping 
relationship among the predictable stations and the regional 
power data. The regional power forecasting results are 
calculated with the forecasting results of several stations 
through the established model. The participated power 
stations are usually screened according to the data quality 
of the power station, the correlation between the station and 
regional power data, and the forecasting accuracy of the 
station. This method can effectively reduce the influence 
of stations with high prediction error and does not require 
all stations in the area to be predictable objects. It can be 
dynamically adjusted according to the actual condition and 
has strong robustness.

The power forecasting accuracy of regional stations 
is usually higher than that of a single station. On the one 
hand, the volatility of regional power is generally weaker 
than that of the power in a single station. On the other hand, 
the forecasting errors of wind farms or solar plants in an 
area can offset each other to some extent when the regional 
power forecasting results are obtained through the single 
stations.

3.4 Deterministic and uncertain forecasting

Deterministic forecasting refers to the single-point 
prediction result, i.e., the expectation of future wind/solar 
power from the mathematical view [78], [79]. Uncertainty 
forecasting refers to the interval prediction results of wind/ 
solar power, which can reduce the decision risk of the 
power system [80], [81]. Uncertainty forecasting can be 
divided into probabilistic forecasting, risk index forecasting, 
and scenario forecasting according to the expression of 
uncertainty [82], [83].

Probabilistic forecasting focuses on the value and the 
occurrence time of the prediction error. It can be divided 
into the parametric method [84] and non-parametric method 
[85], [86], [87] according to whether the distribution of 
single-point prediction error is assumed in advance. The 
parameter method assumes that the prediction error follows 
pre-defined distribution, such as generalized lognormal 
distribution, Beta distribution, Gaussian distribution, etc., 
and then extends the single-point prediction results to the 
interval prediction results. However, the wind/solar power 
forecasting error does not conform to any distribution form; 
the application premise of the parameter method is limited. 
The non-parametric method does not need to presume 
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the distribution of prediction errors, but it requires more 
computational resources. The commonly used methods 
include resampling, kernel density estimation, quantile 
regression, etc.

Risk index forecasting can provide intuitive uncertainty 
information [88]. The commonly used risk indexes include 
atmospheric stability risk index, prediction risk index, 
standardized prediction risk index, etc.

Scenario forecasting provides a series of power 
scenarios to describe the prediction uncertainty [72]. The 
commonly used methods include Monte Carlo algorithm, 
multivariate Gaussian random variable method, multivariate 
autoregressive moving average (ARMA) model, etc.

The uncertain forecasting results of wind power and 
solar power are shown in Fig.5 and Fig.6, respectively.
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Fig. 5 Uncertain forecasting results of wind power

400

300

200

100

0

S
o
la

r 
p
o
w

er
 (

M
W

)

0 50 100 150 200
Time series (15 min)

250 300 350

predict real

Fig. 6 Uncertain forecasting results of solar power

4  Electrical load forecasting

Electrical load forecasting is an essential component of 
the smart grid. It can only base on the historical load data; 
or also take the meteorological factors (such as temperature, 
humidity, irradiance), time labels (time point within the 
day, weekday/weekend/holiday), and economic factors into 
account to improve the forecasting accuracy.

The forecasting methods of electrical load can be divided 
in terms of different classification criteria. The forecasting 
methods can be divided into ultra-short-term, short-term, 
and mid-long-term forecasting according to the temporal 

scale; mathematical equation and artificial intelligence 
forecasting according to whether the prediction model is a 
black-box model; single-point and probabilistic forecasting 
according to the information contained in results.

4.1  Ultra-short-term, short-term, medium-term, 
and long-term forecasting

Ultra-short-term load forecasting results can serve real-
time dispatching and demand response of the power system. 
The forecasting time scale is usually 1 min to 1 h; the spatial 
scale is small, generally a building. The forecasting time 
step is minutes [89].

Short-term load forecasting results can serve the day-
ahead dispatching of the power system, unit commitment, 
and electricity market transactions, etc. The forecasting 
time scale is usually 1 hour to 1 week; the spatial scale is 
generally a building or an area [90], [91]. The forecasting 
step can be minutes, hours, and days [92].

Medium-term load forecasting results can provide the 
basis for the formulation of power system planning schemes. 
The forecasting time scale is usually weeks, months, and 
quarters; the spatial scale is generally a building or an 
area. The forecasting step can be hours, weeks, months, 
and quarters. In addition to forecasting, some scholars use 
Markov chain, Monte Carlo, etc., to generate the medium-
term load simulation results [13].

Long-term load forecasting results can serve the power 
system planning and the formulation of strategic energy 
policies. The forecasting time scale is usually one year to 
several years; the spatial scale can vary from buildings, 
areas to cities, countries. The forecasting time step can span 
from hours to years [93].

4.2  Mathematical equation method and artificial 
intelligence method

The method selection is the core issue of electrical load 
forecasting. The forecasting methods should be selected 
based on scenarios to ensure forecasting accuracy. The 
existing load forecasting methods can be divided into 
the following two categories according to whether the 
prediction model is a black-box model: mathematical 
equation method and artificial intelligence method [7], [10].

The load forecasting based on mathematical equation 
method is a non-black-box model [94]. The commonly used 
methods include regression analysis, exponential smoothing, 
iterative weighted least square, load derivation, etc. The 
corresponding relationship between the load forecasting 
result and its driving factors is clear, but it is necessary to 
understand the load characteristics and specify the model 
type before forecasting.
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Table 4 Summary of different wind power/solar power forecasting methods

Classification 
criteria

Forecasting methods Applicable scenarios Advantages Disadvantages

Modeling 
principle

Physical forecasting
New power station
Inside the station

Not need much 
historical data

Model’s complexity increases exponentially with 
the area and forecasting accuracy
Require a lot of time and computing resources

Statistical forecasting
Power station that has been 
built for some time
Single or regional stations

Wider applicable 
scenarios

Need a large number of historical data to dig the 
mapping laws of series

Classification 
criteria

Forecasting methods Applicable scenarios Roles of forecasting results

Temporal scale

Ultra-short-term 
forecasting

4 hours ahead
Online economic dispatching
Rotating reserve capacity optimization
Power tracking

Short-term forecasting 6 hours to 3 days ahead
Formulation and adjustment of maintenance plans for stations
Formulation day-ahead dispatching plans for electric power system

Mid-long-term forecasting
Months, quarters, and years 
ahead

Arrange major maintenance
Power system planning
Site selection of wind and solar power stations

Classification 
criteria

Forecasting methods Applicable scenarios Accesses to forecasting results

Spatial scale

Station forecasting Single station Obtained by normal modeling

Regional forecasting Multiple stations

Forecast the regional power directly
Forecast the predictable stations in the region first, and then use the 
direct superposition method or the statistical upscaling method to 
obtain regional power forecasting results

Classification 
criteria

Forecasting methods Applicable scenarios Accesses to forecasting results

Results 
displaying 

ways

Deterministic forecasting
Scenarios need single-point
forecasting results

Obtained by normal modeling

Uncertain forecasting
Scenarios need interval
forecasting results

Probabilistic forecasting: parametric method, non-parametric method
Risk index forecasting: atmospheric stability risk index, prediction risk 
index, standardized prediction risk index
Scenario forecasting: Monte Carlo algorithm, multivariate Gaussian 
random variable method, multivariate autoregressive moving average 
model, et al.

Fig. 7 Classification of electrical load forecasting methods
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The load forecasting based on artificial intelligence 
method is a black-box model [93]. The commonly used 
methods include ANN, SVM, RVM, expert system method, 
fuzzy forecasting method, gradient boosting method, etc. 
The mapping relationship among input variables and load 
does not need to specify in advance in this method, and 
the model can be adjusted based on forecasting results. 
However, compared with the forecasting method based on 
mathematical equation, this method requires a large amount 
of historical data, and the interpretability is poor.
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power system mainly include power flow calculation, unit 
commitment, and reliability analysis [96], [97], [98]. The 
power flow calculation is a numerical analysis for the steady-
state of the power system, and the load forecasting error is the 
critical influence factor that causes its analysis uncertainty. 
The unit commitment refers to arranging the generation plan 
with the minimum cost while meeting the power demand and 
achieving the balance with a given load, i.e., design when and 
at what level to operate which unit. The load forecasting error 
affects the optimized results of unit commitment significantly. 
Reliability is an essential performance in the planning and 
operation of the power generation and transmission system. 
Loss of Load Probability (LOLP) is the most widely used 
index to evaluate the power grid’s reliability by calculating 
the probability that the generation cannot meet the demand. 
LOLP is directly affected by the load forecasting error. 
Probabilistic forecasting can provide information on load 
forecasting error, which is beneficial to the power flow 
calculation, unit commitment, and reliability analysis of the 
power system.

The probabilistic forecasting results of electrical load are 
shown in Fig. 8.

The load forecasting category can be selected first 
according to the amount of data: the mathematical equation 
method is more suitable for the forecasting scenario of small 
data; the artificial intelligence method is more suitable for 
the forecasting scenario of extensive data. Then, the specific 
forecasting method can be selected according to the time 
scale: the regression analysis is usually used for mid-long-
term load forecasting with periodicity; the other methods 
are generally used for ultra-short-term and short-term load 
forecasting with greater volatility.

4.3 Single-point and probabilistic forecasting

The forecasting accuracy of load is relatively higher 
than that of wind/solar power, but the probability of single-
point forecasting error is still 100% [95]. The fierce market 
competition, aging infrastructure, and the increasing 
proportion of renewable energy integration make the 
importance of probabilistic load forecasting is growing with 
each passing day.

Probabilistic forecasting can provide more comprehensive 
and accurate information than single-point forecasting. The 
applications of probabilistic forecasting results in the electric 

Table 5 Summary of different electrical load forecasting methods

Classification 
criteria

Forecasting 
methods

Applicable scenarios Roles of forecasting results

Temporal scale

Ultra-
short-term 
forecasting

Temporal scale: 1 minute to 1 hour ahead
Spatial scale: generally a building

Real-time dispatching
Demand response of power system

Short-term 
forecasting

Temporal scale: 1 hour to 1 week ahead
Spatial scale: generally a building or an 
area

Day-ahead dispatching of power system
Unit commitment
Electricity derivative

Medium-term 
forecasting

Temporal scale: weeks, months, quarters 
ahead
Spatial scale: generally a building or an area

Power system planning

Long-term 
forecasting

Temporal scale: 1 year to several years 
ahead
Spatial scale: vary from buildings, areas 
to cities, countries

Power system planning
Formulation of strategic energy policies

Classification 
criteria

Forecasting 
methods

Applicable scenarios Advantages Disadvantages

Model type
(whether is a 
black model)

Mathematical 
equation 

forecasting
Small samples

Not0 need much historical 
data
The corresponding relationship 
between load forecasting result 
and its driving factors is clear

Need to understand the 
load characteristics and 
specify the model type 
before forecasting

Artificial 
intelligence 
forecasting

Big data

The mapping relationship 
among input variables and 
load does not need to specify 
in advance
The model can be adjusted 
according to forecasting results

Require a large amount 
of historical data
Model’s interpretability 
is poor
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Classification 
criteria

Forecasting 
methods

Applicable scenarios Roles of forecasting results

Information 
contained in 

results

Single-point 
forecasting

Scenarios need single-point forecasting 
results

Prerequisite to balance the power supply and demand

Probabilistic 
forecasting

Scenarios need interval forecasting 
results

Prerequisite to balance the power supply and demand
Power flow calculation
Unit commitment
Reliability analysis

Fig. 8 Probabilistic forecasting results of electrical load

5  Wind power-solar power-electrical load 
forecasting

To predict the wind power and solar power on the source 
side, and the electrical load on the load side simultaneously 
can effectively improve the safety and reliability of the 
power system. At present, the study of wind power-solar 
power-electrical load forecasting can be divided into two 
categories according to whether the correlation between 
variables is considered.

5.1  Independent forecasting without considering 
the correlation

At present, most of the studies are independent 
forecasting without considering the correlation between 
variables, i.e., wind power, solar power, electrical load is 
modeled and forecasted respectively in the article. 

1) The same method is used to forecast different 
objects separately. This kind of literature accounts for a 
large amount and can be further divided according to the 
forecasting objects.

a. Wind power and solar power forecasting at the source 
side [99]. Carlos et al. first proposed an online adjustable 
clustering algorithm based on typical and eccentric data 
analysis, and then used the multivariate evolution fuzzy time 
series model to predict wind and solar power, respectively, 
under each classification [100]. Cui et al. established wind 
and solar power forecasting models based on BPNN [101]. 
Gupta et al. used ANN to predict wind speed and irradiance, 
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real respectively [102]. Wang et al. proposed an approximate 
prediction model based on ensemble EMD to solve two 
problems. The decomposed sub-sequences are sensitive to 
original time series; the other is that the correlation with key 
environmental factors is lost when using EMD to forecast 
the wind speed/irradiance time series. The superiority of 
the proposed model is proved compared with the existing 
prediction methods based on EMD and non-decomposition 
[103]. Heydari et al. established the interval prediction 
models of wind speed and irradiance, respectively, based 
on the neural network grouping method and the improved 
multi-objective fruit fly optimization algorithm [104].

b. Wind power or solar power forecasting at the source 
side and electrical load forecasting [105]. Quan et al. took 
the narrowest prediction interval width as the loss function, 
and used the particle swarm algorithm with mutation to 
optimize the connection weights of the neural network. 
Then, the upper and lower limits of wind power/load 
prediction interval can be directly obtained [106]. Ke et al. 
used the probabilistic neural network to predict daily load/
solar power [107]. Xiong et al. established the short-term 
prediction model of solar power/load based on Long Short-
Term Memory (LSTM) and DBN, and then used the linear 
regression equation to dynamically weight the outputs of 
two networks to obtain the final prediction results [108].

Zhu et al. took the factors such as meteorological 
and social information into account and established the 
distributed solar power/load forecasting models based on RF 
[109]. Yang et al. took the haze into account and selected 
the similar days of solar power/load first through principal 
component analysis, grey correlation analysis, and weighted 
similarity equation. Then, they established the wavelet 
neural network model with additional adaptive dynamic 
programming correction to predict the solar power and load, 
respectively [110].

c. Wind power and solar power forecasting at the source 
side and electrical load forecasting. Alipour et al. first used 
the unsupervised autoencoder to extract the features of 
wind power, solar power, and load. Then, they adopted a 
supervised cascaded neural network to model and predict 

continue
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these three objects, respectively, according to the extracted 
features above [111]. Saez et al. proposed a fuzzy prediction 
interval model based on the data covariance to predict the 
wind power, solar power, and load in 15 minutes, 1 hour, 
and 1 day [112]. Gangwar et al. first used the maximal 
overlap discrete wavelet transform to decompose the 
wind speed/irradiance/load time series, and then predicted 
the series in each frequency domain separately through 
ARIMA. The Root Mean Square Error (RMSE) of the 
predicted and actual values are used as the evaluation 
index to adaptively select the optimal input length of each 
prediction model [113].

The above studies use the same method to predict 
different objects without considering the different 
characteristics of wind power, solar power, and load. Some 
scholars have carried out the following research to improve 
forecasting accuracy.

2) Different methods are used to forecast various objects 
separately according to their characteristics. Reikard et al. 
used the random coefficient regression model for wind 
power forecasting aiming at its strong volatility; used the 
ARIMA model for solar power forecasting aiming at its 
nonlinear changes affected by cloud cover, atmospheric 
turbidity, precipitation, etc. [114]. Faraji et al. adopted the 
adaptive neural fuzzy inference system, multilayer perceptron 
artificial neural network, and RBFNN to predict wind speed, 
irradiance, and load. RMSE is used to select the most suitable 
prediction model for each object [115]. Huang et al. applied 
the load adaptive forecasting technology and ARIMA model 
to predict the load and wind power, respectively [116]. Zhang 
et al. proposed a short-term load forecasting method based on 
frequency domain decomposition; the Elman Neural Network 
(ENN) and RF are used to predict the series in each frequency 
domain, respectively. In addition, they established a solar 
power forecasting model based on the iForest algorithm and 
LSTM [117].

5.2 Forecasting considering the correlation

Wind power, solar power, and load are closely related 
to meteorological factors such as wind speed, irradiance, 
and temperature. They have certain interactive coupling 
relationships in different operation scenarios of the 
power system. Therefore, some scholars consider the 
correlation among wind power, solar power, and load to 
improve forecasting accuracy. The studies can be roughly 
divided into the following three categories according to 
consideration ways.

1) To predict the total value of wind power, solar 
power, and load [118]. Alipour et al. used the unsupervised 
autoencoder and supervised cascaded neural network to 

predict the net load (total load minus wind and solar power) 
in short-term and medium-term time scales [111]. Van 
et al. first adopted the cross-validation method to obtain 
the suitable covariance function, then made a probability 
forecasting for the net load (total load minus solar power) 
based on the dynamic Gaussian process [119]. Wood 
proposed a transparent open-box method to predict the 
total power of wind and solar time series. The transparency 
and anti-overfitting ability of the proposed method provide 
advantages for its processing of scattered and non-uniformly 
distributed renewable energy data [120]. 

2) Besides the target object to be predicted, other objects 
are also used as inputs of the model [121]. Ding et al. 
proposed a load forecasting model considering the impact 
of large-scale solar access. They first used the mutual 
information theory to analyze the correlation between solar 
power and bus jurisdiction load, then established a hybrid 
learning model based on the XGBoost and extreme learning 
machine algorithms. The historical load and distributed 
solar power are used in the load forecasting model [122]. He 
et al. proposed a probabilistic load forecasting method based 
on the minimum absolute shrinkage and selection operator-
quantile regression, and the critical characteristics extracted 
from historical load and wind power sequences are used 
as inputs. The results show that the proposed method can 
obtain more accurate probability load forecasting results 
when the impacts of wind power on load are considered 
[123].

3) Model of multiple inputs and outputs is established 
to predict at least two objects of wind power, solar power, 
and load simultaneously [124]. Zhang et al. first assumed 
the residual sequence and sample sequence have similar 
distributions, and the distribution is more similar with 
the sample closer. Then, they proposed a novel interval 
prediction method based on LSTM to synchronously predict 
wind speed and irradiance [125]. Li et al. proposed an 
improved SVM model based on the leapfrog algorithm to 
realize the wind power and solar power forecasting at the 
same time, which took the wind speed, global irradiance, 
scattered irradiance, and related power data of the past 48 
hours as inputs [126]. Laouafi et al. established a BPNN 
model in each season to predict wind power, solar power, 
and load in 1 hour based on historical data [127].

Based on the above research, we focus on the high 
citation papers to further comb the current research status 
in the field of wind power, solar power, and electrical 
load forecasting, from the perspectives of forecasting 
object(s), method(s), temporal and spatial scales, error and 
the highlights of the paper. Table 6 shows some articles 
published in the journal of SCI-Q1 after 2015 and have been 
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cited more than 100 times, which can provide the reference 
for future research directions and the forecasting errors of 
different objects under different temporal scales. Besides, 
the indexes used to evaluate the prediction accuracy should 
be further standardized.

6   Discussion, challenges, and future research 
directions

1) NWP correction
The NWP wind speed/irradiance correction methods can 

be divided into the correction at a single location and the 
correction considering spatial coupling characteristics. The 
ways to improve correction accuracy include the following 
three categories.

a. To establish correction models in different weather 
conditions. The weather conditions are complex and diverse, 
how to accurately classify the weather types is the key of this 
method, which is also the main research direction in the future. 

b. To establish correction models in different frequency 
domains, the appropriate decomposition method and the 
number of decomposition layers are crucial factors. If the 
decomposed layers are nimiety, data sequences in similar 
domains are decomposed and modeled separately, which 
leads to the meaningless increase of the model complexity. 
If the decomposed layers are not enough, the data in 
different frequency domains is not wholly separated, even 
decreasing the correction accuracy.

c. To establish the correction model considering the 
correlation among wind speed/irradiance time series at 

different spatial locations. This method can generally 
improve forecasting accuracy, but it has higher data 
requirements, which needs the NWP results in various 
points.

2) Wind power, solar power, and load forecasting
The classification, applicable scenarios, advantages, and 

disadvantages of different forecasting methods for wind 
power, solar power, and electrical load have been described 
in detail in Section 4 and Section 5. Therefore, we focus on 
the forecasting methods that simultaneously contain at least 
two objects in the following text. 

At present, most studies have not considered the 
correlation among wind, solar, and load, different objects 
are modeled and predicted independently. The existing 
ways to consider the correlation among wind, solar, and 
load mainly include the following three categories.

a. The correlation among wind, solar, and load is 
hidden in the time series, i.e., wind power and solar power 
are usually regarded as “negative-load”, and the net load 
is predicted directly. This category cannot obtain the 
forecasting results of different objects, and the application 
scenarios are mainly concentrated in the microgrid or 
distribution network.

b. The data of other prediction objects are also used 
as inputs of the model. This category method is usually 
applied in load forecasting. In addition to historical load and 
meteorological factors, the information of historical wind 
power or solar power is also used as the inputs of the load 
forecasting model. However, the variation of wind and solar 
power time series is large, leading to the historical data has 
less representative of the future. 

c. Wind power, solar power, and load are predicted through 
the multi-input and multi-output models. This category has a 
wide range of applications. When the prediction objects are at 
the source side, i.e., wind power and solar power, the prediction 
can be based on NWP or historical data. When the prediction 
objects are both at the source and end sides, the prediction is 
based on historical data. However, for short-term wind and 
solar power forecasting, the forecasting accuracy is relatively 
low, which cannot meet the assessment requirements of the 
power system. 

New methods for integrated forecasting of wind, solar, 
and electrical load need to research in the future. It may be 
a good way to predict the wind/solar power or wind speed/
irradiance at first, and then take the predicted wind/solar 
data as partial inputs to predict the load.

7 Conclusion

A comprehensive review of wind, solar, and electrical Fig. 10 Ways to consider correlation among wind, solar, and load

Fig. 9 Ways to improve NWP correction accuracy
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load forecasting methods is provided in this paper. Our 
work includes the survey of NWP wind speed/irradiance 
correction methods, wind power and solar power forecasting 
methods at the production side, and load forecasting 
methods at the demand side. Papers containing at least 
two of these forecasting objects are also surveyed in this 
manuscript, which has no relevant review at present. 
Furthermore, challenges and future research directions of 
wind power, solar power, and electrical load forecasting are 
discussed last.

Nomenclature

NWP Numerical Weather Prediction

WF Wind Forecasting

SF Solar Forecasting

LF Load Forecasting

GFS Global Forecast System

ECMWF European Centre for Medium-Range Weather Forecasts

MM5 Fifth-Generation Mesoscale Model

WRF Weather Research and Forecasting Model

MAE Mean Absolute Error

PCA Principal Component Analysis

DBN Deep Belief Network

STCA Sequence Transfer Correction Algorithm

LR Linear Regression

SVM Support Vector Machine

BPNN Back-Propagation Neural Network

RF Random Forest

RBFNN Radial Basis Function Neural Network

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integrated Moving Average

EMD Empirical Mode Decomposition

VMD Variational Mode Decomposition

WD Wavelet Decomposition

RVM Relevance Vector Machine

LS Least Square

ANN Artificial Neural Network

DP Deep Learning

LOLP Loss of Load Probability

LSTM Long Short-Term Memory

ENN Elman Neural Network

RMSE Root Mean Square Error

CRPS Continuous Ranking Probability Score

MAPE Mean Absolute Percentage Error

ACE Average Coverage Error

IS Interval Sharpness

MP Measured Power

SVR Support Vector Regression

DR Demand Response

MSE Mean Square Error

MRE Mean Relative Error

R2 Coefficient of Determination

NAW Normalized Average Width

ELM Extreme Learning Machine

CV Coefficient of Variance
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