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Abstract: Wind power, solar power, and electrical load forecasting are essential works to ensure the safe and stable
operation of the electric power system. With the increasing permeability of new energy and the rising demand response
load, the uncertainty on the production and load sides are both increased, bringing new challenges to the forecasting
work and putting forward higher requirements to the forecasting accuracy. Most review/survey papers focus on one
specific forecasting object (wind, solar, or load), a few involve the above two or three objects, but the forecasting objects
are surveyed separately. Some papers predict at least two kinds of objects simultaneously to cope with the increasing
uncertainty at both production and load sides. However, there is no corresponding review at present. Hence, our study
provides a comprehensive review of wind, solar, and electrical load forecasting methods. Furthermore, the survey of
Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript. Challenges and
future research directions are discussed at last.
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0 Introduction

To deal with climate change, environmental pollution,
and fossil energy shortage, the energy systems of major
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[2] and the United States [3] put forward the blueprint of
realizing 100% and 80% renewable energy power systems
in 2050, respectively. On the load side, intelligent power
consumption is an essential component of the smart grid. At
present, the United States, Britain, France, Japan, Finland, et
al. have already implemented the demand response projects,
including load response and price response [4], [5].

The increase of wind power and solar power penetration
rate on the generation side and the gradual implementation
of the demand response on the load side lead to the power
system having strong uncertainty at both sides, which brings
greater challenges to the safe and economic operation of the
system.

Renewable energy and load forecasting is an important
work to deal with the dual uncertainty of the power system
[6], [7]. Wind and solar power forecasting are the significant
basis to ensure the safe and stable operation of the power
system with a high proportion of new energy [8], [9]. From
the perspective of the power station, accurate forecasting
results can improve its operation and maintenance level,
reduce the energy curtailment rate, and improve its market
competitiveness. From the perspective of the power
system, reliable forecasting results can effectively reduce
the adverse effects of wind and solar power uncertainty,
help the dispatching department formulate and adjust the
dispatching plan in time, and reduce the operation cost.
Load forecasting is the prerequisite to balancing the power
supply and demand, which plays a key role in the planning
and operation of the power system. Accurate and reliable
forecasting results are of great significance to the dispatch,
maintenance, emergency management, and power flow
analysis of the power system [10], [11].

There are a lot of research works published regarding
wind power, solar power, and load forecasting, and several
review/survey articles have been presented. Most review/
survey articles focus on a specific forecasting object (wind,
solar, or load) [9], [12], [13]. A few involve the above two
or three forecasting objects, but they are reviewed separately
[14], [15].

Actually, wind power, solar power, and electrical load
are closely related to meteorological factors such as wind
speed, temperature, irradiance, and relative humidity. They
all have a certain interactive coupling relationship under
different operation scenarios of the power system. The per-
unit wind power and solar power data in 2016, and typical
year’s per-unit electric load data in all provinces of China
(excluding Hong Kong, Macao, Taiwan, and South China
Sea Islands) are used to further illustrate the correlation
between wind power, solar power, and electrical load.
Pearson correlation coefficient (p,) is used to quantify the
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correlation between variables, as shown in Fig. 1.
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Fig.1 Correlation of wind power, solar power, and electrical load

As can be seen, 1) wind power and solar power basically
have a negative correlation in different provinces, and the
correlation in Northern China is generally higher than that in
Southern China. This is mainly due to the flatter terrain and
the higher meteorological similarity in adjacent locations
in Northern China. 2) Wind power and electrical load
negatively correlate in most provinces, but the correlation is
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weaker than the correlation between new energy and load.
This is because the correlation between wind speed and
irradiance, irradiance and load are higher than that between
wind speed and load. 3) Solar power and electrical load
basically show a positive correlation in different provinces,
and the correlation in Southern China is generally higher
than that in Northern China. This is mainly due to the lower
temperature and the broad utilization of coal (or natural gas)
for heating in Northern China.

The forecasting accuracy can be effectively improved
if this relationship is considered. Some articles predict at
least two kinds of objects simultaneously to cope with the
increasing uncertainty at both production and load sides.
However, there is no corresponding review at present.
Aiming at this problem, our study provides a comprehensive
review of wind power, solar power, and electrical load
forecasting methods.

The main contributions of this paper are as follows.

1) A bird’s eye view of wind, solar, and electrical load
forecasting articles is provided.

2) A survey of Numerical Weather Prediction (NWP)
wind speed/irradiance correction is provided. NWP is
the most critical factor affecting wind and solar power
forecasting accuracy, especially under the short-term time
scale. It is necessary to correct the NWP wind speed/
radiation before wind power and solar power forecasting.

3) An exhaustive review of wind power, solar power,
and electrical load forecasting is provided. Different from
the review papers, which only focus on a specific type of
forecasting methods, such as deep learning methods [15],
support vector machine models [14], ensemble methods
[6], et al., all forecasting methods are considered in this
manuscript. The existing forecasting methods are divided
in terms of different classification criteria. Furthermore,
the applicable scenarios, advantages, and disadvantages of
different forecasting methods are also described.

4) A survey of wind power-solar power-electrical load
forecasting methods is provided. There is no corresponding
paper at present.

The rest of the manuscript is organized as follows.
Section 1 provides a bird’s eye view of SCI articles about
wind, solar, and load forecasting, and highlights our
contributions. Section 2, Section 3, and Section 4 offer
a complete summary of NWP wind speed/irradiation
correction, wind power/solar power forecasting, and
electrical load forecasting from different perspectives.
Section 5 describes the existing forecasting methods of wind
power-solar power-electrical load. The current challenges
and future research directions are discussed in Section 6.
Section 7 concludes the review.

1 A Bird’s eye view

A bird’s eye view of wind, solar, and electrical load
forecasting articles is shown in this section. The view
mainly focuses on the papers indexed by SCI during 2011-
2020.

First, we performed a keyword-based search of research
studied using Web of Science; the keywords are listed in
Table 1.

Table1 Keywords for wind, solar, and electrical load forecasting

Fo:;;:cs:;ng Keywords
wind wind power/wind speed
solar solar power/irradiance
load electrical load/electricity demand

renewable energy/wind solar/wind

wind & solar . .
irradiance

ind /wind d+
wind & load WInG powerwind spee +forecasting

electrical load/electricity demand

/prediction
solar power/irradiance + electrical

lar & load
solar & foa load/electricity demand

wind power/wind speed + solar

irradi + electrical 1
wind & solar & power/irradiance + electrical load/

electricity demand;
load

renewable energy + electrical load/
electricity demand

Then, we performed a preliminary screening of the
retrieved research papers found through the previous step.
The screening criteria for papers are related to wind, solar,
or electrical load forecasting, and indexed by SCI. The
number of SCI publications about wind, solar, and load
forecasting during 2011-2020 is depicted in Fig.2. As shown
in these two figures, while the number of prediction articles
is increasing annually, more and more scholars are paying
attention to predict least two objects simultaneously.

The countries and research institutions that published
papers in SCI-Q1 journals during 2011-2020 are paid
more attention, as shown in Fig. 3 and Table 2. As can be
seen, China has published the largest number of papers in
new energy and load forecasting (accounting for 43.7%),
followed by USA (accounting for 14.3%). In terms of the
published number, the following institutions deserve more
attention: Central South University, Dongbei University of
Finance & Economics, Huazhong University of Science &
Technology, Lanzhou University, North China Electric
Power University, Tsinghua University, et al. in China;
Southern Methodist University, United States Department
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of Energy, et al. in USA; Yildiz Technical University in Table2 A classification of SCI-Q1 publications about wind,
Turkey; Nanyang Technological University, National solar, and load forecasting in 2011-2020
University of Singapore in Singapore; INESC in Portugal; Country Institution Num.  Pro.
Technical University of Denmark in Denmark. Central South University 2% 4.4%
: : Chinese Academy of Sciences 6 1.0%
2020 Chongqing University 5 0.9%
2019 E
2018 i City University of Hong Kong 7 1.2%
2017 1 Dongbei University. of Finance & 21 3.6%
2016 1 Economics
2015 i Guangdong University of Technology 6 1.0%
2014 E
2013 | Hefei University of Technology 5 0.9%
2012 [ Wind forecasting Huazhong University of Science & 16 2.7%
[0 Solar forecasting 170
on ! , \ \ \ I 1 oad forecasting Technology
100200 300 400 500 600 700 800 900 China Hunan University 5 0.9%
Number of SCI publications
(a) for one forecasting object Lanzhou University 12 2.0%
' North Chinz? Ele?tric Power 20 3.4%
2020 ] | ] University
2019 1 Tianjin University 8 1.4%
2018 B
o7 Tsinghua University 12 2.0%
2016 J University of Electronic Science &
. 6 1.0%
2015 ] Technology of China
2014 b Xi'an Jiaotong University 5 0.9%
2013 [ Wind & solar forecasting Others 97 16.5%
2012 [ Wind & load forecasting
2011 I Solar & load forecasting Total 257 43.7%
\ . I Wind & solar & load forecasting
0 10 20 30 40 50 Southern Methodist University 9 1.5%

Number of SCI publications

(b) for at least two forecasting objects United States Department of Energy 11 1.9%

. L . University of California System 7 1.2%
Fig.2 Number of SCI publications about wind, solar, and
load forecasting in 2011-2020 USA University of North Carolina 6 1.0%
University of Texas System 7 1.2%
Others 44 7.5%
Total 84 14.3%
India Yildiz Technical University 5 0.9%
Portugal
South KSOI;:;" China Turkey Others 13 2.2%
 laly Total 18 3.1%
Singapore
Iran Nanyang Technological University 6 1.0%
Germany
England National University of Singapore 5 0.9%
Singapore
Australia Others 2 0.3%
USA
Total 13 2.2%
Fig.3 A classification of SCI-Q1 publications about wind, solar, .
and load forecasting in 2011-2020 (from perspective of country) INESC 6 1.0%
Portugal Others 5 0.9%
Finally, the review/survey articles with higher citation Total 1 1.9%
rates are further focused. A comparative analysis of our X .
L . L . Technical University of Denmark 7 1.2%
work and existing review/survey studies is listed in Table
. . . Denmark Others 2 0.3%
3. As can be seen, there is no survey/review of wind, solar,
and load forecasting articles that consider the coupling Total ? 1.5%
relationship among prediction objects. Others 196 33.3%
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2 NWP wind speed/irradiation correction

NWP model is composed of a set of basic differential
equations that can describe the physical laws of the
atmosphere. NWP predicts future atmospheric states based
on the current weather conditions, including initial values
and boundary conditions. The maximum prediction time
scale is 15 d [29]. NWP can be divided into global NWP
and mesoscale NWP according to the prediction range. The
global NWP model operates at about 15 meteorological
service stations, e.g., Global Forecast System (GFS) and
European Centre for Medium-Range Weather Forecasts
(ECMWF). The temporal and spatial resolution is generally
3-6 h and 16-50 km, respectively. The mesoscale NWP
model takes the outputs of the global NWP model as inputs
and predicts the future atmospheric state by considering the
characteristics of different regions, e.g., Fifth-Generation
Mesoscale Model (MMS5) and The Weather Research
and Forecasting Model (WRF). The mesoscale NWP has
a higher temporal and spatial resolution, the temporal
resolution is usually 10 min-1 h, and the spatial resolution is
usually 3-20 km, even up to 1 km [21].

NWP can provide the meteorological data required
for wind power and solar power forecasting, such as wind
speed, irradiance, temperature. However, the low temporal
and spatial resolution of NWP leads to its low prediction
accuracy. The cubic relationship between wind speed and
wind power, and the approximately linear relationship
between irradiance and solar power make tiny NWP
prediction errors can cause huge power forecasting errors
[30], [31], [32]. Therefore, it is necessary to correct the
NWP wind speed/radiation. The studies can be divided into
NWP correction at a single location and NWP correction
considering the spatial coupling characteristics according to
the inputs of the correction model, i.e., the spatial range of
NWP data.

2.1 Correction at a single location

This category corrects the NWP wind speed/irradiance
by establishing the mapping relationship between the NWP
and measured data at a specific location. The spatial location
of the NWP data is single [33], [34].

Liu et al. established the frequency distribution model
of NWP wind speed error based on non-parametric kernel
density estimation, and corrected the wind speed through
historical prediction error [35]. Zheng et al. used the Kalman
filtering method to correct NWP wind speed in the next 16
steps. The Mean Absolute Error (MAE) of wind speed at
step 16 is reduced by 0.47 m/s, compared with the original
NWP [36]. Hu et al. proposed a hybrid NWP wind speed

correction model based on Principal Component Analysis
(PCA) and improved Deep Belief Network (DBN). The
improved DBN can automatically adjust the learning step
to improve the convergence speed of the algorithm. The
NWP wind speed correction accuracy is increased by 16%
and 30% by using the improved DBN model and the hybrid
model, respectively, compared with the traditional DBN
[37]. Wang et al. proposed a Sequence Transfer Correction
Algorithm (STCA) for NWP wind speed; the sequence
transfer relationship is introduced to improve the certainty
between inputs and outputs of the correction model. Then,
5 NWP corrected models based on STCA are established,
respectively, by using Linear Regression (LR), Support
Vector Machine (SVM), Back-Propagation Neural Network
(BPNN), Random Forest (RF), and Radial Basis Function
Neural Network (RBFNN). The NWP accuracy is improved
by 0.20-2.25 m/s in two wind farms [38].

Lopes et al. established two models to correct NWP
irradiance based on the NWP data and ground observation
results of two years, including a linear regression model
between NWP and measured irradiance; a multiple
regression model among NWP irradiance, other NWP
variables (temperature, relative humidity, wind speed, total
precipitation) and measured irradiance [39]. Reikard et al.
proposed an Autoregressive Integrated Moving Average
model (ARIMA) with the time-varying coefficient based on
the physical characteristics reflected in the weather model to
correct the NWP irradiance. The proposed model can adapt
to the changing atmospheric conditions. The results show
that the corrected NWP irradiance has a great advantage
under the time scale of 1-4 h, compared with the original
NWP irradiance and the forecasted irradiance using the time
series method [40].

Some scholars aimed at the characteristic that the
mapping relationships between NWP and measured data
are different under different weather conditions [41], [42].
The weather conditions are classified according to weather
factors such as wind speed, wind direction [43], irradiance,
clear sky index [44], atmospheric stability [45], seasons [46],
[47]; or by using the clustering, reduced-scenario methods
[48]. Then, the NWP correction model in each weather
condition is established to improve the correction accuracy.

Some scholars corrected the NWP data from the
perspective of frequency domains. First, the measured and
NWP wind speed/irradiance series is decomposed into
different frequency domains. Then, the mapping relationship
between measured and NWP data is established in each
frequency domain. Finally, the results in different frequency
domains are combined to obtain the correction results
of NWP data [49]. The commonly used decomposition
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methods include Empirical Mode Decomposition (EMD),
Variational Mode Decomposition (VMD) [50], Wavelet
Decomposition (WD) [51], etc.

2.2 Correction considering spatial coupling
characteristics

This category considers the coupling relationship among
wind speed/irradiance at different spatial locations, i.e.,
when correcting the NWP at one location, in addition to the
NWP and measured data at that location, the information in
the adjacent area is also taken into account. The NWP wind
speed/irradiance is corrected by establishing the mapping
relationship among NWP data at multiple points and
measured data at a single point, or the mapping relationship
among NWP and measured data at multiple points [39], [52].

Cai et al. established the corresponding relationship
among the NWP and measured wind speed at different
points by SVM to obtain the reference NWP wind speed
series. Then they corrected the NWP through the multi-
task Gaussian process [53]. Chu et al. first calculated the
correlation coefficient between the measured wind speed
series at the location of the wind turbine and the NWP wind
speed series at each spatial point, respectively. Then, the
NWP series with higher correlation are selected as inputs to
correct the NWP by the proposed variable weight combined
method [54]. Yan et al. established an NWP correction
model with multiple inputs and multiple outputs based on
the stacked denoising autoencoder, which can consider the
spatial coupling characteristics of wind speed. The proposed
model can improve the correction accuracy by 15% and
18%, respectively, compared with the neural network and
SVM with single input and output [55].

3 Wind power/solar power forecasting

Wind and solar power forecasting methods can be
divided in terms of different classification criteria. The
forecasting can be divided into physical and statistical
forecasting according to the modeling principle; ultra-short-
term, short-term, and mid-long-term forecasting according
to the temporal scale; station and regional forecasting
according to the spatial scale; deterministic and uncertain
forecasting according to the displaying ways of results.

3.1 Physical method and statistical method

The wind power physical forecasting method first
establishes the computational fluid dynamics model to
calculate the wind condition at the hub height of each wind
turbine with the initial NWP, which considers the impact of
terrain, altitude, and surface roughness changes. Then, the

{ Physical forecasting

Modeling principle

—

Statistical forecasting

J { Ultra-short-term forecasting

)

)

)

Temporal scale [ Short-term forecasting }
Mid-long-term forecasting }

J

)

J

)

Wind power/solar
power forecasting
methods

{ Station forecasting

Spatial scale

1[ Regional forecasting

[ Deterministic forecasting

Results displaying ways

Fig.4 Classification of wind power/solar power forecasting methods

Uncertain forecasting

wind speed is converted into wind power through the speed-
power curve, and the wind farm output is calculated by
adding each wind turbine output [56]. The physical method
can be subdivided into the analytical diagnosis method [57]
and the numerical simulation method [58], [59].

The solar power physical forecasting method first
establishes the solar radiation transfer equation, the
photovoltaic module operation equation, etc., to calculate
the output of each photovoltaic array with the initial NWP,
which considers the geographic information of the solar
power station and module parameters. Then, the solar power
station output is calculated by adding each photovoltaic
array output [60], [61], [62].

The statistical forecasting method establishes the
mapping relationship among the operation data series or
the mapping relationship between the operation data and
NWP data of the wind/solar power station, and the power
is forecasted based on the mapping model. It can predict
the wind/solar power directly; or predict the wind speed/
irradiance and other meteorological information first,
then convert them to power [63]. The commonly used
methods include ARIMA, Kalman filter, SVM, Relevance
Vector Machine (RVM), Least Square method (LS), RF,
Artificial Neural Network (ANN), Deep Learning (DP), and
combined method, etc. [26], [64], [65], [66].

The physical method does not need much historical data
and is suitable for new wind/solar power stations. However,
the complexity of the model increases exponentially with
the area and the forecasting accuracy, which requires a lot
of time and computing resources. The application scope of
the physical method usually concentrates inside the power
station. The statistical method can be applied to power
forecasting in single and regional power stations, but it
needs a large number of historical data to dig the mapping
laws of series. It is more suitable for wind/solar power
stations that have been built for some time.
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3.2 Ultra-short-term, short-term, and mid-long-
term forecasting

Ultra-short-term wind/solar power forecasting provides
the results of power stations in the next few hours, generally
within 4 h [67]. The forecasting results can be used for
online economic dispatching, rotating reserve capacity
optimization, power tracking, etc. The ultra-short-term wind
power forecasting is usually based on the statistical laws
among historical data series [68], [69]. The meteorological
factors, spatial correlations, etc., can also be considered to
improve the forecasting accuracy [70]. For the solar plant,
in addition to the above methods, the ultra-short-term
forecasting results can be obtained through the cloud image
[71], [72]. This method forecasts the shielding of the cloud
to the sunlight by calculating the cloud movement path. The
commonly used cloud images include ground-based and
meteorological satellite images.

Short-term wind/solar power forecasting is usually
based on wind speed, irradiance, and other meteorological
data provided by NWP [73]. The forecasting is performed
by establishing the mapping relationship between NWP
data and actual power data, and the prediction time scale
is generally 6 h-3 d [74], [75]. The forecasting results can
provide effective support for the formulation and adjustment
of maintenance plans for stations, and the formulation of
day-ahead dispatching plans for the electric power system.
The forecasting results are directly affected by NWP
accuracy. Therefore, how to improve the NWP accuracy
is crucial for reducing the power forecasting error in short-
term new energy forecasting.

Mid-long-term wind/solar forecasting is generally aimed
at power generation or wind speed/irradiance, and the
prediction time scale is usually months, quarters, and years
[19]. The forecasting results are usually applied to arrange
major maintenance, power system planning, site selection of
wind and solar power stations, etc.

3.3 Station and regional forecasting

The station and regional forecasting refer to the output
forecasting of a single wind/solar power station and multiple
power stations in an area. The regional forecasting can
forecast the total power directly; or forecast the predictable
stations in the region first, and then use the direct
superposition method or the statistical upscaling method to
obtain the prediction results of the total power [76], [77].

The direct superposition method adds the
forecasting results of each station to obtain the regional
power forecasting results. The calculation method is
straightforward, but the regional power forecasting

16

accuracy is greatly affected by the forecasting results of
each station, and all stations in the area are required to be
predictable objects. The regional power forecasting results
are unavailable if the forecasting results of any station are
missing.

The statistical upscaling method establishes the mapping
relationship among the predictable stations and the regional
power data. The regional power forecasting results are
calculated with the forecasting results of several stations
through the established model. The participated power
stations are usually screened according to the data quality
of the power station, the correlation between the station and
regional power data, and the forecasting accuracy of the
station. This method can effectively reduce the influence
of stations with high prediction error and does not require
all stations in the area to be predictable objects. It can be
dynamically adjusted according to the actual condition and
has strong robustness.

The power forecasting accuracy of regional stations
is usually higher than that of a single station. On the one
hand, the volatility of regional power is generally weaker
than that of the power in a single station. On the other hand,
the forecasting errors of wind farms or solar plants in an
area can offset each other to some extent when the regional
power forecasting results are obtained through the single
stations.

3.4 Deterministic and uncertain forecasting

Deterministic forecasting refers to the single-point
prediction result, i.e., the expectation of future wind/solar
power from the mathematical view [78], [79]. Uncertainty
forecasting refers to the interval prediction results of wind/
solar power, which can reduce the decision risk of the
power system [80], [81]. Uncertainty forecasting can be
divided into probabilistic forecasting, risk index forecasting,
and scenario forecasting according to the expression of
uncertainty [82], [83].

Probabilistic forecasting focuses on the value and the
occurrence time of the prediction error. It can be divided
into the parametric method [84] and non-parametric method
[85], [86], [87] according to whether the distribution of
single-point prediction error is assumed in advance. The
parameter method assumes that the prediction error follows
pre-defined distribution, such as generalized lognormal
distribution, Beta distribution, Gaussian distribution, etc.,
and then extends the single-point prediction results to the
interval prediction results. However, the wind/solar power
forecasting error does not conform to any distribution form;
the application premise of the parameter method is limited.
The non-parametric method does not need to presume
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the distribution of prediction errors, but it requires more
computational resources. The commonly used methods
include resampling, kernel density estimation, quantile
regression, etc.

Risk index forecasting can provide intuitive uncertainty
information [88]. The commonly used risk indexes include
atmospheric stability risk index, prediction risk index,
standardized prediction risk index, etc.

Scenario forecasting provides a series of power
scenarios to describe the prediction uncertainty [72]. The
commonly used methods include Monte Carlo algorithm,
multivariate Gaussian random variable method, multivariate
autoregressive moving average (ARMA) model, etc.

The uncertain forecasting results of wind power and
solar power are shown in Fig.5 and Fig.6, respectively.
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Fig.5 Uncertain forecasting results of wind power
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Fig. 6 Uncertain forecasting results of solar power

4 Electrical load forecasting

Electrical load forecasting is an essential component of
the smart grid. It can only base on the historical load data;
or also take the meteorological factors (such as temperature,
humidity, irradiance), time labels (time point within the
day, weekday/weekend/holiday), and economic factors into
account to improve the forecasting accuracy.

The forecasting methods of electrical load can be divided
in terms of different classification criteria. The forecasting
methods can be divided into ultra-short-term, short-term,
and mid-long-term forecasting according to the temporal

scale; mathematical equation and artificial intelligence
forecasting according to whether the prediction model is a
black-box model; single-point and probabilistic forecasting
according to the information contained in results.

4.1 Ultra-short-term, short-term, medium-term,
and long-term forecasting

Ultra-short-term load forecasting results can serve real-
time dispatching and demand response of the power system.
The forecasting time scale is usually 1 min to 1 h; the spatial
scale is small, generally a building. The forecasting time
step is minutes [89].

Short-term load forecasting results can serve the day-
ahead dispatching of the power system, unit commitment,
and electricity market transactions, etc. The forecasting
time scale is usually 1 hour to 1 week; the spatial scale is
generally a building or an area [90], [91]. The forecasting
step can be minutes, hours, and days [92].

Medium-term load forecasting results can provide the
basis for the formulation of power system planning schemes.
The forecasting time scale is usually weeks, months, and
quarters; the spatial scale is generally a building or an
area. The forecasting step can be hours, weeks, months,
and quarters. In addition to forecasting, some scholars use
Markov chain, Monte Carlo, etc., to generate the medium-
term load simulation results [13].

Long-term load forecasting results can serve the power
system planning and the formulation of strategic energy
policies. The forecasting time scale is usually one year to
several years; the spatial scale can vary from buildings,
areas to cities, countries. The forecasting time step can span
from hours to years [93].

4.2 Mathematical equation method and artificial
intelligence method

The method selection is the core issue of electrical load
forecasting. The forecasting methods should be selected
based on scenarios to ensure forecasting accuracy. The
existing load forecasting methods can be divided into
the following two categories according to whether the
prediction model is a black-box model: mathematical
equation method and artificial intelligence method [7], [10].

The load forecasting based on mathematical equation
method is a non-black-box model [94]. The commonly used
methods include regression analysis, exponential smoothing,
iterative weighted least square, load derivation, etc. The
corresponding relationship between the load forecasting
result and its driving factors is clear, but it is necessary to
understand the load characteristics and specify the model
type before forecasting.
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Table 4 Summary of different wind power/solar power forecasting methods

Classification
iteri Forecasting methods Applicable scenarios Advantages Disadvantages
criteria
. Model’s complexity increases exponentially with
. . New power station Not need much .
Physical forecasting . . .. the area and forecasting accuracy
Inside the station historical data . . .
- Require a lot of time and computing resources
Modeling
principle Power station that has been
. . . . Wider applicable Need a large number of historical data to dig the
Statistical forecasting built for some time . . .
. . . scenarios mapping laws of series
Single or regional stations
Classification
iteri Forecasting methods Applicable scenarios Roles of forecasting results
criteria

Temporal scale

Ultra-short-term
forecasting

Short-term forecasting

Mid-long-term forecasting

4 hours ahead

6 hours to 3 days ahead

Months, quarters, and years
ahead

Online economic dispatching
Rotating reserve capacity optimization
Power tracking

Formulation and adjustment of maintenance plans for stations
Formulation day-ahead dispatching plans for electric power system

Arrange major maintenance
Power system planning
Site selection of wind and solar power stations

Classification
criteria

Forecasting methods

Applicable scenarios

Accesses to forecasting results

Spatial scale

Station forecasting

Regional forecasting

Single station

Multiple stations

Obtained by normal modeling

Forecast the regional power directly

Forecast the predictable stations in the region first, and then use the
direct superposition method or the statistical upscaling method to
obtain regional power forecasting results

Classification . . . 3
iteri Forecasting methods Applicable scenarios Accesses to forecasting results
criteria
. . Scenarios need single-point . .
Deterministic forecasting . gep Obtained by normal modeling
forecasting results
Results Probabilistic forecasting: parametric method, non-parametric method
displaying Risk index forecasting: atmospheric stability risk index, prediction risk
ways Scenarios need interval index, standardized prediction risk index

Uncertain forecasting

forecasting results

Scenario forecasting: Monte Carlo algorithm, multivariate Gaussian
random variable method, multivariate autoregressive moving average
model, et al.

{Ultra-short—tenn forecastin,

The load forecasting based on artificial intelligence
method is a black-box model [93]. The commonly used
methods include ANN, SVM, RVM, expert system method,
fuzzy forecasting method, gradient boosting method, etc.
The mapping relationship among input variables and load
does not need to specify in advance in this method, and
the model can be adjusted based on forecasting results.

J Temporal scale [ Short-term forecasting
1{ Medium-term forecasting

[ Long-term forecasting

Model type forecasting

(whether is a black model) [

Electrial load
forecasting methods

Artificial intelligence
forecasting

Information contained in
results

However, compared with the forecasting method based on

¢
)
)
)
{ Mathematical equatioin J
1
)
)

[ Single-point forecasting
H[ Probabilistic forecasting

Fig. 7 Classification of electrical load forecasting methods

mathematical equation, this method requires a large amount
of historical data, and the interpretability is poor.
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The load forecasting category can be selected first
according to the amount of data: the mathematical equation
method is more suitable for the forecasting scenario of small
data; the artificial intelligence method is more suitable for
the forecasting scenario of extensive data. Then, the specific
forecasting method can be selected according to the time
scale: the regression analysis is usually used for mid-long-
term load forecasting with periodicity; the other methods
are generally used for ultra-short-term and short-term load
forecasting with greater volatility.

4.3 Single-point and probabilistic forecasting

The forecasting accuracy of load is relatively higher
than that of wind/solar power, but the probability of single-
point forecasting error is still 100% [95]. The fierce market
competition, aging infrastructure, and the increasing
proportion of renewable energy integration make the
importance of probabilistic load forecasting is growing with
each passing day.

Probabilistic forecasting can provide more comprehensive
and accurate information than single-point forecasting. The
applications of probabilistic forecasting results in the electric

power system mainly include power flow calculation, unit
commitment, and reliability analysis [96], [97], [98]. The
power flow calculation is a numerical analysis for the steady-
state of the power system, and the load forecasting error is the
critical influence factor that causes its analysis uncertainty.
The unit commitment refers to arranging the generation plan
with the minimum cost while meeting the power demand and
achieving the balance with a given load, i.e., design when and
at what level to operate which unit. The load forecasting error
affects the optimized results of unit commitment significantly.
Reliability is an essential performance in the planning and
operation of the power generation and transmission system.
Loss of Load Probability (LOLP) is the most widely used
index to evaluate the power grid’s reliability by calculating
the probability that the generation cannot meet the demand.
LOLP is directly affected by the load forecasting error.
Probabilistic forecasting can provide information on load
forecasting error, which is beneficial to the power flow
calculation, unit commitment, and reliability analysis of the
power system.

The probabilistic forecasting results of electrical load are
shown in Fig. 8.

Table 5 Summary of different electrical load forecasting methods

Classification Forecastin,
. = Applicable scenarios Roles of forecasting results
criteria methods
Ultra- . . . .
short-term Temporal scale: 1 minute to 1 hour ahead Real-time dispatching
A Spatial scale: generally a buildin Demand response of power system
forecasting P & yasd & P powersy
Short-term Temporal scale: 1 hour to 1 week ahead Day-ahead dispatching of power system
. Spatial scale: generally a building or an Unit commitment

forecasting

arca

Temporal scale
Medium-term

Electricity derivative

Temporal scale: weeks, months, quarters

. i ahead Power system planning
orecastin;
g Spatial scale: generally a building or an area
Temporal scale: 1 year to several years
Long-term ahead Power system planning
forecasting Spatial scale: vary from buildings, areas Formulation of strategic energy policies
to cities, countries
Classification Forecastin,
. < Applicable scenarios Advantages Disadvantages
criteria methods
Not0 d h historical
. Otf meed much istorica Need to understand the
Mathematical data .
. . . . load characteristics and
equation Small samples The corresponding relationship .
. . specify the model type
forecasting between load forecasting result .
g . before forecasting
Model type and its driving factors is clear
(whether is a The mapping relationship
black model) . among input variables and Require a large amount
Artificial . S
. . . load does not need to specify of historical data
intelligence Big data . . .
. in advance Model’s interpretability
forecasting

The model can be adjusted is poor

according to forecasting results
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continue
Classification Forecastin,
. < Applicable scenarios Roles of forecasting results
criteria methods
Single-point Scenarios need single-point forecastin ..
& p. giep & Prerequisite to balance the power supply and demand
forecasting results
Information
contained in Prerequisite to balance the power supply and demand
results Probabilistic Scenarios need interval forecasting Power flow calculation

forecasting results

Unit commitment
Reliability analysis

real

predict
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Time series (15 min)

Fig. 8 Probabilistic forecasting results of electrical load

5 Wind power-solar power-electrical load
forecasting

To predict the wind power and solar power on the source
side, and the electrical load on the load side simultaneously
can effectively improve the safety and reliability of the
power system. At present, the study of wind power-solar
power-electrical load forecasting can be divided into two
categories according to whether the correlation between
variables is considered.

5.1 Independent forecasting without considering
the correlation

At present, most of the studies are independent
forecasting without considering the correlation between
variables, i.e., wind power, solar power, electrical load is
modeled and forecasted respectively in the article.

1) The same method is used to forecast different
objects separately. This kind of literature accounts for a
large amount and can be further divided according to the
forecasting objects.

a. Wind power and solar power forecasting at the source
side [99]. Carlos et al. first proposed an online adjustable
clustering algorithm based on typical and eccentric data
analysis, and then used the multivariate evolution fuzzy time
series model to predict wind and solar power, respectively,
under each classification [100]. Cui et al. established wind
and solar power forecasting models based on BPNN [101].
Gupta et al. used ANN to predict wind speed and irradiance,
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respectively [102]. Wang et al. proposed an approximate
prediction model based on ensemble EMD to solve two
problems. The decomposed sub-sequences are sensitive to
original time series; the other is that the correlation with key
environmental factors is lost when using EMD to forecast
the wind speed/irradiance time series. The superiority of
the proposed model is proved compared with the existing
prediction methods based on EMD and non-decomposition
[103]. Heydari et al. established the interval prediction
models of wind speed and irradiance, respectively, based
on the neural network grouping method and the improved
multi-objective fruit fly optimization algorithm [104].

b. Wind power or solar power forecasting at the source
side and electrical load forecasting [105]. Quan et al. took
the narrowest prediction interval width as the loss function,
and used the particle swarm algorithm with mutation to
optimize the connection weights of the neural network.
Then, the upper and lower limits of wind power/load
prediction interval can be directly obtained [106]. Ke et al.
used the probabilistic neural network to predict daily load/
solar power [107]. Xiong et al. established the short-term
prediction model of solar power/load based on Long Short-
Term Memory (LSTM) and DBN, and then used the linear
regression equation to dynamically weight the outputs of
two networks to obtain the final prediction results [108].

Zhu et al. took the factors such as meteorological
and social information into account and established the
distributed solar power/load forecasting models based on RF
[109]. Yang et al. took the haze into account and selected
the similar days of solar power/load first through principal
component analysis, grey correlation analysis, and weighted
similarity equation. Then, they established the wavelet
neural network model with additional adaptive dynamic
programming correction to predict the solar power and load,
respectively [110].

c. Wind power and solar power forecasting at the source
side and electrical load forecasting. Alipour et al. first used
the unsupervised autoencoder to extract the features of
wind power, solar power, and load. Then, they adopted a
supervised cascaded neural network to model and predict
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these three objects, respectively, according to the extracted
features above [111]. Saez et al. proposed a fuzzy prediction
interval model based on the data covariance to predict the
wind power, solar power, and load in 15 minutes, 1 hour,
and 1 day [112]. Gangwar et al. first used the maximal
overlap discrete wavelet transform to decompose the
wind speed/irradiance/load time series, and then predicted
the series in each frequency domain separately through
ARIMA. The Root Mean Square Error (RMSE) of the
predicted and actual values are used as the evaluation
index to adaptively select the optimal input length of each
prediction model [113].

The above studies use the same method to predict
different objects without considering the different
characteristics of wind power, solar power, and load. Some
scholars have carried out the following research to improve
forecasting accuracy.

2) Different methods are used to forecast various objects
separately according to their characteristics. Reikard et al.
used the random coefficient regression model for wind
power forecasting aiming at its strong volatility; used the
ARIMA model for solar power forecasting aiming at its
nonlinear changes affected by cloud cover, atmospheric
turbidity, precipitation, etc. [114]. Faraji et al. adopted the
adaptive neural fuzzy inference system, multilayer perceptron
artificial neural network, and RBFNN to predict wind speed,
irradiance, and load. RMSE is used to select the most suitable
prediction model for each object [115]. Huang et al. applied
the load adaptive forecasting technology and ARIMA model
to predict the load and wind power, respectively [116]. Zhang
et al. proposed a short-term load forecasting method based on
frequency domain decomposition; the Elman Neural Network
(ENN) and RF are used to predict the series in each frequency
domain, respectively. In addition, they established a solar
power forecasting model based on the iForest algorithm and
LSTM [117].

5.2 Forecasting considering the correlation

Wind power, solar power, and load are closely related
to meteorological factors such as wind speed, irradiance,
and temperature. They have certain interactive coupling
relationships in different operation scenarios of the
power system. Therefore, some scholars consider the
correlation among wind power, solar power, and load to
improve forecasting accuracy. The studies can be roughly
divided into the following three categories according to
consideration ways.

1) To predict the total value of wind power, solar
power, and load [118]. Alipour et al. used the unsupervised
autoencoder and supervised cascaded neural network to

predict the net load (total load minus wind and solar power)
in short-term and medium-term time scales [111]. Van
et al. first adopted the cross-validation method to obtain
the suitable covariance function, then made a probability
forecasting for the net load (total load minus solar power)
based on the dynamic Gaussian process [119]. Wood
proposed a transparent open-box method to predict the
total power of wind and solar time series. The transparency
and anti-overfitting ability of the proposed method provide
advantages for its processing of scattered and non-uniformly
distributed renewable energy data [120].

2) Besides the target object to be predicted, other objects
are also used as inputs of the model [121]. Ding et al.
proposed a load forecasting model considering the impact
of large-scale solar access. They first used the mutual
information theory to analyze the correlation between solar
power and bus jurisdiction load, then established a hybrid
learning model based on the XGBoost and extreme learning
machine algorithms. The historical load and distributed
solar power are used in the load forecasting model [122]. He
et al. proposed a probabilistic load forecasting method based
on the minimum absolute shrinkage and selection operator-
quantile regression, and the critical characteristics extracted
from historical load and wind power sequences are used
as inputs. The results show that the proposed method can
obtain more accurate probability load forecasting results
when the impacts of wind power on load are considered
[123].

3) Model of multiple inputs and outputs is established
to predict at least two objects of wind power, solar power,
and load simultaneously [124]. Zhang et al. first assumed
the residual sequence and sample sequence have similar
distributions, and the distribution is more similar with
the sample closer. Then, they proposed a novel interval
prediction method based on LSTM to synchronously predict
wind speed and irradiance [125]. Li et al. proposed an
improved SVM model based on the leapfrog algorithm to
realize the wind power and solar power forecasting at the
same time, which took the wind speed, global irradiance,
scattered irradiance, and related power data of the past 48
hours as inputs [126]. Laouafi et al. established a BPNN
model in each season to predict wind power, solar power,
and load in 1 hour based on historical data [127].

Based on the above research, we focus on the high
citation papers to further comb the current research status
in the field of wind power, solar power, and electrical
load forecasting, from the perspectives of forecasting
object(s), method(s), temporal and spatial scales, error and
the highlights of the paper. Table 6 shows some articles
published in the journal of SCI-Q1 after 2015 and have been
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cited more than 100 times, which can provide the reference
for future research directions and the forecasting errors of
different objects under different temporal scales. Besides,
the indexes used to evaluate the prediction accuracy should
be further standardized.

6 Discussion, challenges, and future research
directions

1) NWP correction

The NWP wind speed/irradiance correction methods can
be divided into the correction at a single location and the
correction considering spatial coupling characteristics. The
ways to improve correction accuracy include the following
three categories.

a. To establish correction models in different weather
conditions. The weather conditions are complex and diverse,
how to accurately classify the weather types is the key of this
method, which is also the main research direction in the future.

b. To establish correction models in different frequency
domains, the appropriate decomposition method and the
number of decomposition layers are crucial factors. If the
decomposed layers are nimiety, data sequences in similar
domains are decomposed and modeled separately, which
leads to the meaningless increase of the model complexity.
If the decomposed layers are not enough, the data in
different frequency domains is not wholly separated, even
decreasing the correction accuracy.

c. To establish the correction model considering the
correlation among wind speed/irradiance time series at

Disadvantages

« Wind and solar power are |i| * Cannot obtain forecasting results
regarded as “negative-load”|i| of all objects

« Net load is predicted « Applicable scenarios are mainly
directly concentrated in microgrid or

distributioin network
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objects are also used as
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Objects are predicted
through multi-inputs and
multi-outputs model

'] Accuracy of short-term wind and
solar power forecasting based on
historical data is low

Fig. 10 'Ways to consider correlation among wind, solar, and load
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different spatial locations. This method can generally
improve forecasting accuracy, but it has higher data
requirements, which needs the NWP results in various
points.

2) Wind power, solar power, and load forecasting

The classification, applicable scenarios, advantages, and
disadvantages of different forecasting methods for wind
power, solar power, and electrical load have been described
in detail in Section 4 and Section 5. Therefore, we focus on
the forecasting methods that simultaneously contain at least
two objects in the following text.

At present, most studies have not considered the
correlation among wind, solar, and load, different objects
are modeled and predicted independently. The existing
ways to consider the correlation among wind, solar, and
load mainly include the following three categories.

a. The correlation among wind, solar, and load is
hidden in the time series, i.e., wind power and solar power
are usually regarded as “negative-load”, and the net load
is predicted directly. This category cannot obtain the
forecasting results of different objects, and the application
scenarios are mainly concentrated in the microgrid or
distribution network.

b. The data of other prediction objects are also used
as inputs of the model. This category method is usually
applied in load forecasting. In addition to historical load and
meteorological factors, the information of historical wind
power or solar power is also used as the inputs of the load
forecasting model. However, the variation of wind and solar
power time series is large, leading to the historical data has
less representative of the future.

c¢. Wind power, solar power, and load are predicted through
the multi-input and multi-output models. This category has a
wide range of applications. When the prediction objects are at
the source side, i.e., wind power and solar power, the prediction
can be based on NWP or historical data. When the prediction
objects are both at the source and end sides, the prediction is
based on historical data. However, for short-term wind and
solar power forecasting, the forecasting accuracy is relatively
low, which cannot meet the assessment requirements of the
power system.

New methods for integrated forecasting of wind, solar,
and electrical load need to research in the future. It may be
a good way to predict the wind/solar power or wind speed/
irradiance at first, and then take the predicted wind/solar
data as partial inputs to predict the load.

7 Conclusion

A comprehensive review of wind, solar, and electrical
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load forecasting methods is provided in this paper. Our
work includes the survey of NWP wind speed/irradiance
correction methods, wind power and solar power forecasting
methods at the production side, and load forecasting
methods at the demand side. Papers containing at least
two of these forecasting objects are also surveyed in this
manuscript, which has no relevant review at present.
Furthermore, challenges and future research directions of
wind power, solar power, and electrical load forecasting are
discussed last.

Nomenclature

NwpP Numerical Weather Prediction
WF Wind Forecasting
SF Solar Forecasting
LF Load Forecasting
GFS Global Forecast System
ECMWF  European Centre for Medium-Range Weather Forecasts
MMS5 Fifth-Generation Mesoscale Model
WRF Weather Research and Forecasting Model
MAE Mean Absolute Error
PCA Principal Component Analysis
DBN Deep Belief Network
STCA Sequence Transfer Correction Algorithm
LR Linear Regression
SVM Support Vector Machine
BPNN

Back-Propagation Neural Network

RF Random Forest

RBFNN  Radial Basis Function Neural Network
ARMA  Autoregressive Moving Average
ARIMA  Autoregressive Integrated Moving Average

EMD Empirical Mode Decomposition
VMD Variational Mode Decomposition
WD Wavelet Decomposition
RVM Relevance Vector Machine
LS Least Square
ANN Artificial Neural Network
DP Deep Learning
LOLP Loss of Load Probability
LSTM Long Short-Term Memory

ENN Elman Neural Network

RMSE  Root Mean Square Error
CRPS Continuous Ranking Probability Score
MAPE Mean Absolute Percentage Error
ACE Average Coverage Error

IS Interval Sharpness

MP Measured Power
SVR Support Vector Regression

DR Demand Response
MSE Mean Square Error
MRE Mean Relative Error

R’ Coefficient of Determination
NAW Normalized Average Width
ELM Extreme Learning Machine

CV Coefficient of Variance
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