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Abstract: Due to low investment cost and high reliability, a new scheme called DR-HVDC (Diode Rectifier based HVDC) 
transmission was recently proposed for grid integration of large offshore wind farms. However, in this scheme, the 
application of conventional control strategies for stability operation face several challenges due to the uncontrollability of 
the DR. In this paper, a coordinated control strategy of offshore wind farms using the DR-HVDC transmission technology 
to connect with the onshore grid, is investigated. A novel coordinated control strategy for DR-HVDC is proposed based 
on the analysis of the DC current control ability of the full-bridge-based modular multilevel converter (FB-MMC) at the 
onshore station and the input and output characteristics of the diode rectifier at the offshore. Considering the characteristics of 
operation stability and decoupling between reactive power and active power, a simplified design based on double-loop droop 
control for offshore AC voltage is proposed after power flow and voltage–current (I–V) characteristics of the offshore wind 
farm being analyzed. Furthermore, the impact of onshore AC fault to offshore wind farm is analyzed, and a fast fault detection 
and protection strategy without relying on communication is proposed. Case studies carried out by PSCAD/EMTDC verify the 
effectiveness of the proposed control strategy for the start up, power fluctuation, and onshore and offshore fault conditions. 

Keywords: Diode rectifier, HVDC, PMSG, FB-MMC, Control strategy, AC fault.
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1	 Introduction 

The voltage source converter based on high-voltage 
direct current (VSC-HVDC) transmission technology has 

attracted increasing attention because of its advantages such 
as flexible control, supply to passive system, and the need 
for few filter banks; further, it has gained popularity for use 
in offshore wind farm integration [1–2]. The AC voltage 
control of offshore wind farm is important to ensure the 
transmission of offshore wind power, and it is controlled by 
the rectifier converter at the transmission end in the VSC-
HVDC schemes [3–6]. An alternative control strategy for 
offshore voltage control is proposed, wherein a voltage 
control strategy developed in a microgrid [7–12] is applied 
to wind turbines, which enables the wind turbines to operate 
as grid forming units and provide voltage and frequency 
control [13–15]. However, when the wind turbines operate 

Yan Li
liyan@epri.sgcc.com.cn 

Shuai Liang
liangshuai93@163.com

Scan for more details



Global Energy Interconnection Vol. 3 No. 3  Jun. 2020

206

in a grid forming unit, it is difficult to achieve the maximum 
power tracking without auxiliary components.

Recent ly ,  a  new topology ca l led  DR-HVDC 
transmission was proposed to deal with offshore wind farm 
integration with advantage of low cost and high reliability 
[16–17]. The wind farm can operate at maximum power 
point tracking without auxiliary components when the DR 
topology is combined with the voltage control strategy of 
wind turbines. Different strategies have been proposed for 
wind turbine control, including centralized control [17–19], 
synchronous control based on GPS signals [20–21], master–
slave control [22–24], and droop control [25–27], which are 
similar to strategies developed in the micro grid. 

The droop control used in [25–27], which uses the local 
signal and achieves hot-plug, is more easy to implement [7–
9]. However, the droop control methods utilize P–V and Q–
f droop characteristics to control active and reactive power 
flows, and they are characterized by slow dynamics and 
the coupling of active and reactive power. Droop control is 
divided into single-loop droop control and multi-loop droop 
control [7–9]. The latter is prone to being less damped and 
experiencing instability more easily especially in a high-
power converter, with negative damping synthesized by the 
inner current loop at certain harmonic frequencies [25–26]. 
Therefore, multi-loop control schemes can hardly meet the 
requirement of voltage waveform quality. 

In the DR-HVDC transmission scheme, the onshore 
converter operates as a voltage source, and the wind farm 
and rectifier operate as a current source [17–27]. However, 
this coordinated control is problematic once a DC fault 
occurs, and an additional control strategy or equipment is 
required. 

The linear relationship of diode rectifier between the 
input and output and DC current control ability of the 
onshore converter is analyzed, and it provides new insight 

into the control of the DR-HVDC system. A coordinate 
control strategy is proposed for DR-HVDC system. 
With DC current being controlled by onshore converter 
and power flow analysis of offshore wind farm, a 
simplified control strategy for wind turbines based on I–
V droop characteristics is designed and analyzed with 
the stability improvement of the AC voltage of offshore 
wind farms, which also decouples the active and reactive 
power. A new insight of frequency control is proposed 
based on Park transmission. A current-error-dependent 
fault protection is used to protect converters from the 
overcurrent via regulation of the voltage of the wind 
turbine during fault transients because the inner current 
loop is eliminated. The proposed control strategy allows 
for the synchronization of wind turbines, reactive power 
sharing without communications between wind turbines, 
fast response once fault occurs, and fast recovery after 
the fault is cleared. 

The remainder of this manuscript is organized as 
follows: The mathematic model in the dq axis of the 
offshore wind power system is presented in Section 
2. A simplified voltage controller based on I–V droop 
characteristics is proposed with protection schemes in 
Section 3. Section 4 presents the simulation model built 
in PSCAD/EMTDC to verify the controller. Finally, the 
conclusions of this study are provided in Section 5.

2	 Model of the offshore wind farm and DR-HVDC

The offshore wind farm collected by DR is shown in 
Fig. 1, and it consists of several wind turbine (WT) clusters. 
Each cluster comprises fully rated converter-based WTs. 
The offshore AC grid is connected to the offshore DC grid 
with a 12-pulse diode rectifier that comprises two 6-pulse 
diode bridges, thereby enabling better power quality at the 

Fig. 1  Topology of wind farm integrated by diode-based rectifier
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collection point of the AC grid. Further, reactive power 
compensation and harmonic filtering is achieved by the 
capacitor and filter banks. The pulse of the diode rectifier 
can be increased to cut the weight and size of platform 
further because the volume of the harmonic filters is less; 
however, it will increase the difficulty of transformer design 
and investment. Only a 12-pulse diode rectifier is used in 
this paper. 

The MMC technique is selected for future VSC-based 
HVDC grids. The FB-MMC not only can block DC faults 
but also provide flexible control because of the negative 
voltage generating capability [5–6]; it is used in this study.

Following the criterion of connecting the wind farms 
into power grid, the wind power system should provide 
active power and reactive power control. A permanent 
magnet synchronous generator (PMSG) is used as the 
wind turbine generator, cascaded with a fully rated AC/
DC rectifier as machine side converter (MSC) and a DC/
AC inverter as grid side converter (GSC) based on IGBT. 
Unlike a conventional wind power system, the GSC needs 
to achieve the control of AC voltage at the collection point, 
as the rectifier station cannot control the AC voltage of 
offshore wind farms. To maintain the power balance of 
wind power system, the MSC of wind turbine is used to 
control the DC link voltage. 

2.1	 Onshore converter based on FBMMC

The diagram of FBMMC is shown in Fig. 2; FBMMC 
it is composed of six arms, and each arm includes 2N 
sub-models and arm inductors Ls. vap and van are the 

output voltages of the upper and lower arms of phase A, 
respectively, and iap and ian are the currents of the upper and 
lower arms of phase A, respectively.

As the output voltage of the sub-model of FB-MMC can 
be −vc, 0, and +vc, DC voltage of FB-MMC can be controlled 
from Vdc to﹣Vdc [28–31], making the FB-MMC can be in 
current source converter mode or an voltage source converter. 
Consider the output voltage of phase A as an example.
	          

� (1)

where ua is the AC voltage of the FB-MMC, Vdc is DC 
voltage of the FB-MMC, and uacm is the common-mode 
voltage used to control the circulation current.

From the DC side, according to KVL

� (2)

The dc-link dynamic can be directly controlled by 
controlling sub-model capacitor voltage.

2.2	 Offshore rectifier based on diode

The relationship of the average DC voltage of the diode-
based bridge VRdc and the AC voltage VF and DC current Idc 
is

� (3)

where LTR is the reactance of the diode rectifier transformer, 
ωF is the frequency of the offshore system, Vdc is the 
DC voltage of the onshore converter, R is the equivalent 
resistance of the HVDC link, B is the number of the 
6-pulse diode rectifier, and N is the ratio of the transformer. 
According to (3), VF is linear with VRdc and Idc, and the diode 
rectifier conducts only when VF is higher than the threshold 
value because VRdc must be larger than zero. 

Ignoring the loss of the rectifier, the active power and 
reactive power is

� (4)

From (3) and (4), the relationship between the active 
power and VF is shown in Fig. 3. The VF increases with 
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an increase in active power, and the amplitude of the AC 
voltage is only changed from 1 to 1.03 pu when the active 
power output of the wind farm changes from 0 to the rated 
value with Idc being fixed. In addition, if Idc is changed, the 
active power will also change.

The LTR causes a commutation voltage drop in the output 
DC voltage. This drop can be represented as resistance ru 
located at the DC side. As the commutation effect is moved 
to the DC side neglecting the harmonics of system, the 
following dq mathematical model is derived [27, 28, 32].

	
� (5)
�

where Idrac is the input current of the diode rectifier,  δ is the 
angle between VF and the d axis, and φ is the angle between 
VF and Idrac. Note that Idrac can be determined by Idc, which 
provides a new possibility for DR-HVDC.

2.3	 Grid side converter of PMSG

The detailed GSC is shown in Fig. 4, where the LC filter 
and transformer are included. The LC filter is used to ensure 
a low harmonic current injection to the grid.

The dynamic equation of the capacitor voltage vector, 
inductance, and collection line expressed in the dq 
synchronous reference frame is
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Fig. 4  Details of grid side converter

 

� (6)

where Cf is the filter capacitor, Vo is the output voltage, Io 
is the output current of GSC, and Il is the current of filter 
inductance. Further, Rf and Lf are the respective equivalent 
resistance and inductance, Vcdq is the modulation voltage of 
converter, RL and LL are the respective equivalent resistance 
and inductance, and IF is the current of collection line.

When the reactive compensation capacitor is considered, 
the angle between Idracd and VF is zero; that is, Idracq=0. 
According to (4) and (5), the equivalent circuit in the 
synchronously rotating dq frame is as shown in Fig. 5, 
which is easier to analyze and simplify. Further, the diode 
rectifier station can be considered as a voltage-dependent 
current source.

3	� Control strategy for stability operation of 
offshore wind farm integrated with DR-HVDC

3.1	 Control strategy of onshore converter

1) DC link current control
According to (3), the onshore converter can be operated 

as a voltage source or a current source. 
The control of the dc-link current is illustrated in Fig. 

6. A close loop is used to regulate the dc-link current Idc to 
its reference Idcref , and to generate the DC voltage reference 
Vdcref . The DC fault can be cleared by setting Idcref to zero 
without blocking MMC if a DC fault occurs. The sub-

Fig. 5  Simplification of equivalent circuit considering Idracq=0
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model voltage vc is controlled to its reference value (vc_ref) 
by adjusting the active power current Id. The reactive power 
Q is regulated to its reference Qref . Current vector control is 
used to regulate the AC current Idq of MMC to its reference 
Idqref and to generate the AC voltage reference Uabcref. 
A circulating current is used to optimize the converter 
properties and generate common-mode voltage reference 
uacmref; it is not illustrated here. 

2) Start up
According to (4), VRdc will increase with the power 

transmitted by DR-HVDC with a fixed Idc and VF. To 
accelerate the AC voltage and decrease the power losses 
caused by the smaller the DC link current, a start up strategy 
for FBMMC is used.

�
(7)

where VdcN is the nominal DC voltage of the onshore converter.
3) Onshore fault protection
Once an onshore fault occurs, the MMC will not be 

able to deliver active power to the load. In general, the DC 
capacitor will be charged, and the DC voltage will rise rapidly 
because the offshore wind farm will keep delivering power. 

However, the dc-link current is controlled in this study. 
Once the AC fault occurs, the current loop in Fig. 6 will 
saturate, and it would make the sub-model voltage controller 
invalid. The DC capacitor will then be charged, and the 
sub-model voltage will increase, while the DC voltage 
remains almost unchanged because the linear relationship 
between DR and the AC voltage is controlled by WT. It is 
difficult for offshore wind farm to detect the onshore fault 
without communication as no obvious local variables can 
be detected. And semiconductor devices will be destroyed 
without an additional protection strategy. Here, a protection 
strategy for the onshore fault is proposed.

	
� (8)
�
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3.2	 Control strategy of GSC

As mentioned before, the offshore wind turbines take 
the responsibility of voltage and frequency control, and 
power control. A simpler and faster controller of the grid-
side converter of PMSG is proposed for GSC considering 
the onshore converter:

1) Power controller
Because the WT cluster is usually connected with 

parallel wind power systems, there should be a coordinated 
control strategy between the WTs to supply the required 
power without any communications among converters; 
therefore, droop controls are implemented [11,30].

The instantaneous active and reactive power are 
calculated as 

	�
� (9)

To gain a higher quality of power being injected into 
grid, a one-order low-pass filter with a cut-off frequency ωc 
is used [30–31]. The average active P and reactive power Q 
are obtained as

� (10)

According to (10), the power droop control are 
intrinsically low band-width controllers with slow dynamics 
[33–34]. When voltage orientation is considered, the active 
power is proportional with iod, and the reactive power is 
proportional with the ioq. 

At the steady state, the relationship of the output voltage 
of the GSC, the ac voltage at the collection point and the 
current can be derived from (6).

� (11)

Equation (11) implies that the I–V characteristics of 
the converter that IFdi and IFqi are related to the output 
voltage of the converter because VF is clamped by the diode 
rectifier according to (3). Therefore, power sharing between 
converters can be achieved by adjusting the output voltage 
of converters. 

The power flow of the collection line can be rewritten as
	
�
� (12) 
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related to the voltage difference of the q component. To 
achieve faster dynamics, the I–V based droop controller is 
adapted here according to (11) and (12).

�
� (13)

where Ild
* is the reference value of the d-axis current and 

it is calculated by Pmppt/Vo; Ild
* is the reference of reactive 

power and it is designed to be zero, where Vo-ref is reference 
value of AC offshore voltage; VoN is the rated value; ωFN is 
rated frequency value; and Kq is the droop coefficient that is 
selected based on the power rating of wind turbines to avoid 
current circulation.

This I–V droop controller simplifies the nonlinear 
control problem of the active and reactive sharing, and 
it will not influence by the parameters of the line, which 
decouples reactive and active powers further. In addition, 
with the inherent filter of the active and reactive power 
measurement being eliminated, the system reacts quickly to 
power changes.

2) Voltage controller
According to (6), the open-loop output-voltage dynamics 

can be derived as

	  	�  (14)

As the I–V controller is used, a single-loop voltage 
controller is adopted without the current controller for 
simplification. Equation (14) shows that the output voltage 
belongs to a second-order system. To achieve good tracking 
of the output voltage, we propose the following controller 
expression.

	

		
� (15)
For a 100 MW wind farm with parameters as listed in 

Table 1, the PID parameters of the voltage loop are Kvp = 1, 
Kvi = 100, and KvD = 0.0001. Considering only the d-axis, the 
control block diagram and bode plot of the transfer function 
is shown in Fig. 7 and 8. The system shows a gain margin 
of infinity and a phase margin of 32° with a bandwidth of 
1030 Hz. 
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3) Frequency controller
The three phase utility voltages can be rewritten in the 

synchronous reference frame using the PLL output θ* as

� (16) 

The difference of the angle is very small; therefore, the 
equation can be rewritten as

� (17)

The angle is the integration of frequency, that is,

� (18)

A PI controller is designed for frequency control. A new 
control strategy is proposed; this strategy combines droop 
control and Park transformation, and it is easy to design and 
is closer to the natural characteristics of the droop, as shown 
by (18). 

For the 100-MW wind farm with parameters as listed 
in Table 1, the PI parameters of frequency loop and PLL 
are Kwp = 42 and Kwi = 2, and KpPLL = 0.05 and KiPLL = 1.5, 
respectively. Considering only the q-axis, the control block 
diagram and bode plot of the open loop is shown in Fig. 9 
and 10. It can be found that the system has a gain margin of 
infinity and a phase margin of 170° with a bandwidth 
of 100 Hz. Therefore, it can be concluded that the system 
remains stable in the q-axis.
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4) Fault protection
Unlike synchronous generators, the converter does not 

have any overload capability, and therefore, a large transient 
current caused by disturbances can damage the valves 
during the offshore fault. Therefore, a fault protection 
strategy must be implemented in the control system. Once 
an overcurrent is detected, the current can be limited by 
quickly decreasing the voltage reference as shown in (19). 
The current will be limited as the voltage drop between the 
output point of the converter and the fault point is decreased.

	
� (19)

In addition, considering frequency control during 
the fault and to gain a faster recovery after the fault, the 
frequency axis, i.e., the q-axis, is kept prior, that is,

� (20)

In addition, if the onshore fault occurs, with the strategy 
of (8), the DC voltage of DR-HVDC will increase, which 
increases Vo, and here, a fast power reduction is used by the 
decreasing voltage reference as shown in (19).

The diagram of the control strategy proposed in this 
paper is shown in Fig. 11, which includes the I–V droop 
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controller generating the voltage reference for the voltage 
controller and the frequency reference for the frequency 
controller; further, a single loop controller is used to make 
the output voltage track the voltage reference. As the inner 
loop current is eliminated, a current error-based limiter is 
used to protect from converter overcurrent.

4	 Results 

Simulation models of the HVDC system with the wind 
farm collected and interconnected by the diode-based 
rectifier are developed on the PSCAD/EMTDC platform. 
The topology is shown in Fig. 1, and the parameters are 
listed in Table 1. The string is equal to one wind power 
system, and there are six strings. The total rated power is 
1000 MW; there are four strings rated at 200 MW and two 
strings rated at 100 MW. The distance between each string 
is 5 km. As a detailed switch mode is time consuming, an 
average model of the MMC is used in the simulation.

Table 1  Parameters of the simulation system

Components Parameters Values

Wind system

Power 200 MW/100 MW

Transformer 3.3/66 kV

Filter capacitor 0.1 pu

Converter reactance 0.15 pu

Switching frequency 1.95 kHz

Diode based 
Rectifier

Transformer 66/261.8/261.8 kV

Leakage inductance 0.2 pu

Onshore VSC

DC voltage 640 kV

DC current 1.5 kA

Power 1000 MW

Transformer 400 kV/330 kV

4.1	 Start up and steady operation

Assume that WTs are equipped with an internal power 
supply such as an uninterruptible power supply (UPS) that 
can help the WT to supply critical components for very 
short durations. 

The dc current of the HVDC link is built by onshore 
MMC first, following which the breaker of the diode 
rectifier and the filter are closed. The DC current of the 
grid-side FB-MMC is shown in Fig. 12. After the onshore 
FB-MMC starts up, its DC current is controlled to be 0. 
After 0.25 s, the DC current of the FB-MMC increases 
and reaches 0.32 kA. Then, the wind turbine can be started 
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individually, and the offshore AC voltage will be built by 
the GSC.

Fig. 12  Waveforms of onshore FB-MMC during startup
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The self-startup of wind turbines will work once the 
wind speed exceeds 4 m/s. When the generator reaches 
a certain speed, the pitch angle is manually adjusted to 
0° from 90° at a speed of 2°/s, which is neglected in the 
simulation. Once the generator speed reaches the nominal 
speed, it will be integrated into the grid. Fig. 13 and 14 
shows the start-up of the system.

From Fig. 13, it can be seen that the first wind farm is 
started at t = 2.5 s, and the AC voltage is built to 3.3 kV 
as shown in Fig. 13(c) and wind power rated 200 MW is 
transmitted to the DC grid as shown in Fig. 13(a). Then, 
other wind farms are synchronized and integrated into the 
DR rectifier one by one at t = 4.5 s, 6.5 s, 8.5 s, 10.5 s, 
and 13.5 s. With more WTs connected, the reactive power 
produced by wind farm #1 is reduced and shared with other 
wind farms according to the droop coefficient, as shown 
in Fig. 13(b). Fig. 14 shows the curves at collection point 
for the corresponding values in Fig. 13. At t = 13.5 s, the 
total power of the wind farm reaches 1000 MW as shown 
in Fig. 14 (a). The active power of the DR increases and the 
reactive power decreases. 

Fig. 13  Performance of the offshore system during 
start-up of each wind farm
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Fig. 14  Performance of the offshore system during start up 
and steady operation at collection point
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At t = 18 s, the active power reference of wind farm 
#1 decrease from 200 MW to 100 MW, and the results 
shows that the output active power follows the reference. 
The voltage and frequency are shown in Fig. 14 (b) and 
(c), which maintain stable operation. The DC current of 
the HVDC link follows its reference as stated in (7) and as 
shown in Fig. 14 (e). 

Note that the wind farm started first takes the responsibility 
of charging the transformer and the reactive compensators, 
and therefore, a considerable amount of reactive power will be 
produced by this wind farm. This reactive power is decreased 
once other wind farms are integrated, and it is finally shared 
between wind farms according to the droop coefficient.

4.2	 AC Fault of offshore wind farm

A three-phase grounding fault of the offshore systems 
occurs at t = 25 s, and it lasts for 0.5 s. The AC voltage of 
on shore grid quickly reduces to 0, and the current of the 
wind farm is reduced to a small value owing to voltage 
protection as shown in Fig. 15. Fig. 16 and 17 show that the 
voltage and frequency of system and each wind farm can 
recover to normal quickly after the fault.

4.3	 DC Fault of offshore wind farm

A permanent pole-to-pole DC fault occurs at t = 8 s. 
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transformer, the AC voltage drops to 0.1 pu, as shown in 
Fig. 18 (b) and (e). That is, during the DC fault, the offshore 
wind farm adopts low voltage ride-through control; wind 
farms reduce the output power and disconnect. During the 
fault, the wind turbine output AC current, which is affected 
by the current limit control (19), is 1.2 pu, as shown in Fig. 
18 (f).

4.4	 AC Fault of onshore system

A three-phase grounding fault of the onshore systems 
occurs at t = 4 s and lasts 0.5 s. The AC voltage of onshore 
grid quickly reduces to 0 and the current of the MMC 
increases to its limit at about 1.2 pu as shown in Fig. 19. 
As shown in Fig. 19 (b), the current loop remains saturated 
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Fig. 15  Performance of the offshore system during grounding 
fault at collection point
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Fig. 16  Performance of the offshore system during 
grounding fault at collection point
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Fig. 17  Performance of each wind turbine during grounding 
fault at collection point

The DC voltage drops to zero after the DC fault, as shown 
in Fig. 18 (c). The DC current control drops to 0 with the 
control strategy shown in Fig. 7 (b). After the DC short-
circuit fault occurs, because of the coupling characteristics 
of the DC voltage and the AC voltage, and considering 
the existence of the leakage reactance of the converter 
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Fig. 19  Performance of MMC during onshore grounding fault
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until the sub-model voltage controller returns to valid.
As onshore fault stops the transmission of the active 

power, and there is a difference between the active power 
of wind farm and the onshore system. The curves of S1 in 
Fig. 20 represent the case without any protection strategy. 
The curves of S2 in Fig. 20 represent the strategy shown in 
(8), and the curves of S3 represent the strategy shown in (8) 
and (19). The DC capacitor is charged, and the sub-model 
voltage increases, as shown in Fig. 20(a); the DC voltage 
remains constant as shown in Fig. 20 (b), which makes it 
difficult to detect onshore fault without communication. 
When the DC current reduction of S2 is adapted, the DC 
voltage increases as well as VF, which makes the wind farm 
experience a high-voltage ride through and the active power 
decrease automatically. However, the overvoltage of the 
HVDC link is 1.4 pu. To decrease the overvoltage of the 
HVDC link, a fast power reduction strategy is used by the 
wind farm. Curves S3 show a smaller capacitor voltage, 
smaller DC overvoltage, and a quick response.

5	 Conclusions

In this paper, a simplified strategy with a fast 
response is proposed for PMSG based offshore wind 
farms integrated with DR-HVDC. 

A new coordinated control strategy for system 
stability operation of DR-HVDC system is proposed by 
analyzing the DC current control ability of the FB-MMC 
and characteristics of the diode rectifier, which has the 
advantage of flexible capability on DC fault clearing. 

The relationship among voltage, frequency and 
current of GSC is analyzed and a simplified controller 
is designed based on the I-V characteristics, which has 
faster dynamics and more stable. A frequency controller 

based on Park transformation is designed. As the DC 
current control of FB-MMC introduces new problem to 
the onshore AC fault, a protection strategy is proposed, 
which achieves fast onshore fault detection and power 
reduction to protect MMC from being destroyed without 
communication. 

The detailed simulation model in PSCAD/EMTDC is 
built and various scenarios including the start-up, steady 
operations and response to fault are simulated. It can be 
concluded that the proposed control strategy can achieve 
the goal of synchronization of wind turbines, reactive power 
sharing without communications between converters, fast 
response once onshore or offshore fault occurs without 
overcurrent and overvoltage, and a quick recovery after the 
fault is cleared.
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