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Abstract: The modelling of the distribution transformer winding is the starting point and serves as important basis for the 
transformer characteristics analysis and the lightning pulse response prediction. A distributed parameters model can 
depict the winding characteristics accurately, but it requires complex calculations. Lumped parameter model requires less 
calculations, but its applicable frequency range is not wide. This paper studies the amplitude-frequency characteristics 
of the lightning wave, compares the transformer modelling methods and finally proposes a modified lumped parameter 
model, based on the above comparison. The proposed model minimizes the errors provoked by the lumped parameter 
approximation, and the hyperbolic functions of the distributed parameter model. By this modification it becomes possible 
to accurately describe the winding characteristics and rapidly obtain the node voltage response. The proposed model can 
provide theoretical and experimental support to lightning protection of the distribution transformer.

Keywords: Wide band frequency response, Distributed parameter model, Lumped parameter model, Distribution transformer, 
Lightning protection.
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1 Introduction

Distribution transformer is an important power 
conversion equipment, the safe and stable operation of 
which ensures the reliable power supply [1]. Since the 
lightning induced overvoltage (LIOV), with a frequency 
range from power frequency to several megahertz, is the 
primary cause of transformer insulation fault, and the 
existing models are concentrated on the medium and low 
frequency range, it is essential to study a wider frequency 
band calculation model of the distribution transformer [2].

Scan for more details
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The transformer windings modelling approaches can be 
roughly separated into: a) electromagnetic field modelling 
and b) circuit modelling. The first approach is rarely applied, 
as the winding structure is too complex for a numerical 
solution [3]. The latter one divides the transformer winding 
into several units, constructs the equivalent circuit of 
each unit and links those equivalent circuits with the 
electromagnetic coupling relationship between the units 
being considered [4]. The circuit modelling approach includes 
different methods of modelling: the distributed parameters 
model, the lumped parameter model, and the hybrid model. 
The last one evolves from the first two modelling methods [5].

In this paper, the amplitude-frequency characteristic of 
the lightning wave is analysed, and the applicable frequency 
ranges of different circuit models are compared. As a result, 
a modified wide band lumped parameter model, based on 
distributed parameters model, is proposed.

2  Amplitude-frequency characteristics of the 
lightning waveform

The lightning discharge process is very fast, and the peak 
current value is huge. That peak current and the overvoltage 
caused by it can destroy the insulation of the transformer 
and affect the power system reliability. The analysis of the 
amplitude-frequency characteristics of the lightning voltage 
wave is important for the realistic simulation of the lightning 
that strikes the transformer [6].

At present, the widely used standard waveforms of the 
lightning pulse voltage for experiments and simulation in 
international academia are the full wave shock wave [7] 
and the intercept wave shock wave. In the international 
standards like IEEE-587, BS6651, IEC62305-1, etc., the 
recommended lightning wave pulses for simulation and 
protection tests, are the following [8]:

• First lightning strike waveform: the rising time of the 
pulse is 10 μs and the time to half-peak is 350 μs

• Subsequent lightning strike waveform: the rising time 
of pulse is 0.25 μs and the time to half-peak is 100 μs

• A common test waveform: the rising time of pulses is 
8 μs and the half-peak time is 20 μs

Following the Chinese Standard GB_T 7449-1987 [9], 
the standard waveform of the lightning shock test is defined 
as follows: the rising time of the pulse is 1.2 μs and the half 
peak time is 50 μs.

The double exponential function expression of lightning 
shock wave is as follows [10]:

 (1)
In (1), the Um is the peak voltage, α and β are the wave 

rising slope attenuation constant and the wave tail decay 

constant. According to the simplified calculation in [11], α 
and β have the following relations:

   

 (2)

Here T1 is the rising time of the pulses and T2 is the half 
peak time. The simulated waveform of the lightning voltage, 
expressed in MATLAB, following the Chinese Standard 
GB_T 7449-1987 (T1 = 1.2 μs, T2 = 50 μs, Um ≈ 1.05) is 
shown in Fig.1.

The applying of the Fourier transform to the lightning 
shock wave expression (1) results in:

 (3)

The voltage amplitude (4) can be obtained as the module 
of (3):

 (4)

Fig. 2 and Fig. 3 show the voltage amplitude-frequency 
relationship for different lightning waves definitions.

According to the shown amplitude-frequency graphical 
relationship, it can be concluded that with the increase 
of the frequency, the waveform component decreases in 
amplitude. At a frequency of over 1 MHz, the amplitude 
will be very low.

Although there are several, all similar standardized 
lightning waveforms applied for testing, the real lightning 
wave that invades the transformer is not the same [12]. Its 
shape is far away from the standard waveform. The real 
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characteristics of the lightning invasion waves in substations 
are measured and rearranged statistically in [13]. This 
reference found out that there is a great difference between 
the actual waveform and the standard testing waveforms. 
As a main result, some lightning waves prove to keep 
high amplitude of their characteristic when the frequency 
is above 1 MHz. To accurately analyse the influence of 
the lightning wave on the distribution transformer, it is 
necessary to analyse the winding voltage response of the 
transformer in the broadband range of 0 to several terahertz 
and to establish a wide-band transformer model.

winding, i.e. the multi-conductor transmission line (MTL) 
model, is commonly used in the large transformer winding 
modelling in the high frequency range [14]. This model 
serves to study the overvoltage response and the impedance 
characteristics. The lumped parameter model is generally 
used to analyse the medium and low frequency response (less 
than 1 MHz) of the transformer [15].

3.1 Distributed parameter model

The MTL model is constructed under the following 
assumed conditions:

• The coils of the different winding layers have the 
same length, which ensures the same propagation time in 
each transmission line and the coupling effect between the 
transmission lines [16, 17]. Each coil port can be treated as 
a node to calculate the node voltage.

• Only transverse component of electromagnetic wave 
(TEM) travels in the transformer winding and the radial 
component is ignored. The influence on the potential 
distribution from the bending and displacement of the 
windings is ignored as well [18].

In the MTL model, each coil is a unit and is treated 
as a straight transmission line. The voltage and current 
distribution in the line can be calculated by boundary 
conditions generated from the connecting relation of the 
coils [19].

The distributed parameters change with the frequency 
due to the nonlinearity of the iron core, the skin effect and 
the eddy-current effect of the conductor, which makes the 
frequency-domain model equations easier to be solved. The 
telegraph equations of the MTL model with each coil being 
regarded as a unit are as follows [20]:

 (5)

where U and I are the voltage and current vectors of each 
coil; the L, C, R and G are the inductance, capacitance, 
resistance and conductance parameter matrixes; x represents 
the position that begins at the head of the coils and points to 
their end.

Let P and T be the phase-mode conversion matrix of U 
and I, while Z R sL= + , and Y G sC= + , so that:

 (6)

where Λ is a diagonal matrix formed by the eigenvalues of 
Z and Y. The diagonal elements of Λ are the propagation 
constants of transmission lines. According to the equation 
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Fig. 2 Amplitude-frequency analysis of the lightning wave 
when T1 = 1.2 μs, T2 =50 μs
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when T1 = 10 μs, T2=350 μs

3  Distributed and lumped parameter model 
of distribution transformer winding

The distributed parameter model of a transformer 
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(5), the relation (7) can be derived:
    (7)
The relationships deduced in [21] between the current 

vector and voltage vector in the head and the end of the 
coils, are as follows:

 

 
(8)

Here sI�  and sU�  are the current and voltage vectors in the 
beginning of the coils, while RI�  and RU�  are at the end. The 
MTL model is equivalent to the π type circuit, shown in Fig. 4.

The admittances are:

 
(9)

The MTL model can be considered equivalent to a two-
terminal port, and its voltage response and input impedance 
can be obtained by solving the node voltage equations [22].

3.2 Lumped parameter model

The construction of the lumped parameter model of the 
transformer winding, is presented in Fig. 5. The elements 
R, L, C and G correspond to the inductance, capacitance, 
resistance and conductance of the longitudinal branch. Each 
half of C and G total value is connected at each of the two 
nodes respectively [23].
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The lumped parameter model can be represented in 
the equivalent circuit of Fig. 4 and accordingly, its voltage 
response and input impedance can be obtained by solving 
the node voltage equations [24]:

 

 
(10)

For the winding of the transformer, the equation can 
also be established, considering the head and the end of the 
circuit, and the voltage of the equivalent circuit.

 (11)

 

3.3  Comparison of the two π type equivalent 
circuits

The distributed and lumped parameter models can 
be compared to the π type equivalent circuit in Fig. 4. 
Extending the hyperbolic functions in (8), results in:

 

 (12)

When πx , tanh(x) ≈ x, csch(x)≈1/x. Only if the 
elements of Λ satisfy the condition j2πfΛ ≤1, or if the 
propagation time of the electromagnetic wave through 
per unit length of transmission line is far less than 1, there 
will be another approximation done: tanh(Λ/2)≈Λ/2 and 
csch(Λ)≈1/Λ. Under this approximation, a relation (13) 
exists between the parameter matrixes of the two π type 
equivalent circuits. Therefore, j2πfΛ ≤1 is taken as the 
basis of calculating the applicable frequency range of the 
lumped parameter model.
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voltage at the node i can be obtained according to the node 
voltage equations:

 (15)

 (16)

4 A modified lumped parameter model
4.1 Equivalent circuit

According to Section 3, the distributed parameter 
model is accurate in high frequency range, and the highest 
applicable frequency of lumped parameter model can be 
defined by j2πfΛ ≤1. The result which lumped parameter 
model’s error occurs in several hundred kilohertz can be 
calculated using the parameters of common distribution 
transformers, and the result can be found from the following 
simulation.

A modified lumped parameter model is proposed 
in [25]. The central idea of the model is consistent with 
the analysis of Section 3.3, where the lumped parameter 
model is the low frequency approximation of a distributed 
parameter model. The hyperbolic functions in (12) have an 
approximated form as follows:

 
 

(17)
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between coth(x)- x-1 and k2x. Finally, the result is k2= 0.375, 
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Although the wide frequency band error decreases in 
lumped parameter proposed in the model, the global error 
cannot be guaranteed. Based on [25], this paper proposes 
a modified lumped parameter model, the low frequency 
accuracy and the global error, both get improved.
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between coth(x) and x-1+ k2x, decrease. The error between 
the two models then decreases. The absolute error 
between the two models is assessed by the quadratic 
sum of errors between hyperbolic functions and their 
approximated equivalent expansions in the frequency 
range from 0 to 5 MHz:
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Meanwhile, the tanh(0.5x) ≈ 0.5x at low frequency, and 
tanh(0.5x) = coth(x)-csch(x) = (k2-k1) x. Therefore, the low 
frequency accuracy of the desired parameter model can be 
guaranteed if (k2 - k1) is approximately equal to 0.5.

According to (12), the constraint conditions of k1 and k2 
are as follows:

 (19)

Plan (1): Without considering the constraint k2 - k1 ≈ 0.5,  
let the derivatives of errcsch and errcoth equal to 0 to minimize 
them simultaneously. A pair of k1 and k2 is obtained: k2 ≈ 0.3375, 
k1 ≈ -0.1703. Therefore, (20) can be used:

 (20)

Plan (2): Considering k2 - k1 = 0.5 to guarantee the 
low frequency accuracy, let the partial differential of sum 
of errcsch and errcoth equal to 0. A pair of k1 and k2 is 
obtained: k2 ≈ 0.3336, k1 ≈ -0.1664. Therefore:

 (21)

Comparing the hyperbolic approximated functions 
shown in (20), (21) and (17), the errors between lumped 
parameter models and distributed parameter model can be 
depicted in Fig. 6 and Fig. 7.
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According to Fig. 6 and Fig. 7, the applicable frequency 
ranges of the values of k1 and k2 in plan (1) and plan (2) are 
0~5 MHz, both wider than the traditional lumped parameter 
model. The plan (1) has a smaller global error and the plan 
(2) has a better low frequency accuracy. Considering that 
the plan (1) has much smaller high frequency error and its 
low frequency error is also within the allowed error range, 
k1 and k2 in plan (1) are chosen as the simulation parameters. 
In this case the Y1 and Y2 of the modified lumped parameter 
model are as follows:

 (22)

In the lumped parameter model with a line turn as a unit, 
the equivalent circuit of the unit line turns is shown in Fig. 8.

4.2 Modelling and simulation

The chosen transformer is a S9 series, 100 kVA, three 
phase 50 Hz, 10/0.4 kV, oil-immersed natural convection 
cooled transformer. To simplify the computation of the 
simulated object, only one phase of the winding with 
technical parameters, as in Table 1, is considered.
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To calculate the interturn capacitance, interlayer 
capacitance and ground capacitance and to form the 
capacitance parameter matrix C, the plate capacitance 
method and the coaxial cylinder method from [26] 
are used. The parameters L and G are calculated from 
their relationship with C. The R can be calculated from 
empirically fit formulas.

Uniformly sampling 500 frequency points from 0 to 5 MHz 
range, a simulation and calculation of the node voltage 
response of the transformer winding according to the MTL 
model, is done. The original lumped parameter model 
and the modified lumped parameter model, respectively, 
are applied in the calculations. The amplitude-frequency 
characteristics of the voltage transfer function at the node at 
No. 217, or the head-end of the 9th coil of the 7th layer, are 
depicted as in Fig. 9.
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The characteristic in Fig. 9 shows that the simulation 
results of the original Lumped parameter model and the 
MTL model differ significantly when the frequency is 
higher than 2 MHz. The results of the proposed modified 
lumped parameter model and the MTL model almost 
coincide with each other from 0 to 5 MHz, which proves 
that the applicable frequency range is extended by the 
proposed model to about 5 MHz.

The physical significance of the modified model is 
proved by the capacitance and admittance behaviour in 
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parallel with the longitudinal inductance. As an example, 
a lossless transmission line is taken. It has been mentioned 
above that the propagation time of a unit length transmission 
line should be much lower than 1, i.e. j2πfΛ ≤1, or the 
coil parameters have to satisfy the condition LC �� /1 .  
This means that the node admittance to the earth is 
much lower than the internode admittance [27]. The coil 
parameters will meet the above conditions when frequency 
is low enough and will no longer meet the condition when 
the increasing frequency results in the increase of the node 
admittance to the ground and the decrease of the internode 
admittance. That latter case makes the energy consuming at 
the inductance branch to increase and the voltage wave is no 
longer propagated along the coil from the head to the end, 
so that the error in the lumped parameter circuit occurs.

The internode admittance being an admittance branch 
in parallel with the inductance branch, as in Fig. 8, will not 
decrease all the way with the increase of the frequency. 
The susceptance of the parallel capacitor branch increases 
with the frequency, which is helpful for the propagation 
of energy from the head to the end of the coil. Hence, the 
modified lumped parameter model equals to an adding of a 
compensating capacitor to the longitudinal inductor branch.

5 Conclusion

This paper proves that the lumped parameter model and 
the MTL model can be equivalent to a π type circuit. After 
analysing the similarities and differences between these two 
models, a modified lumped parameter model is proposed. 
In conclusion, the simulation results from the proposed 
model, verify that the applicable frequency range of the 
lumped parameter model is extended up to 5 MHz. This 
result provides a theoretical basis, capable to enlarge the 
research to an important experimental knowledge, ensuring 
that the future power system will be more predictable and 
hence, more reliable. The further research on the protection 
of the distribution transformer windings insulation will 
continue, making less the cost of the protection and safer the 
exploiting and the repairment.
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