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Abstract: Decarbonization of the electricity sector is crucial to mitigate the impacts of climate change and global warming 
over the coming decades. The key challenges for achieving this goal are carbon emission trading and electricity sector 
regulation, which are also the major components of the carbon and electricity markets, respectively. In this paper, a joint 
electricity and carbon market model is proposed to investigate the relationships between electricity price, carbon price, and 
electricity generation capacity, thereby identifying pathways toward a renewable energy transition under the transactional 
energy interconnection framework. The proposed model is a dynamically iterative optimization model consisting of upper-
level and lower-level models. The upper-level model optimizes power generation and obtains the electricity price, which 
drives the lower-level model to update the carbon price and electricity generation capacity. The proposed model is verified 
using the Northeast Asia power grid. The results show that increasing carbon price will result in increased electricity price, 
along with further increases in renewable energy generation capacity in the following period. This increase in renewable 
energy generation will reduce reliance on carbon-emitting energy sources, and hence the carbon price will decline. 
Moreover, the interconnection among zones in the Northeast Asia power grid will enable reasonable allocation of zonal 
power generation. Carbon capture and storage (CCS) will be an effective technology to reduce the carbon emissions and 
further realize the emission reduction targets in 2030-2050. It eases the stress of realizing the energy transition because of 
the less urgency to install additional renewable energy capacity.
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1	 Introduction

Climate change and global warming, caused by emission 
of greenhouse gases as the byproducts of fossil energy 
consumption, are becoming major challenges that impede 
sustainable economic and social development [1-3]. It is 
reported that the atmospheric concentration of greenhouse 
gases reached 414.7 parts per million (ppm) in 2019, 
which was the highest level ever [4]. At the same time, global 
average temperature exceeded pre-industrial levels by 1.1 °C [1], 
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resulting in increasingly extreme climatic events and natural 
disasters. Therefore, actively mitigating climate change and 
promoting low-carbon development have gained consensus 
among the international community [5-6].

It is undisputable that the emissions generated by fossil 
energy are the greatest contributor to global warming, 
especially CO2 emissions from the use of fossil energy [7-8]. 
Thus, reducing these emissions from fossil energy is critical 
for limiting the increase in global average temperature to 
less than 2 °C above preindustrial levels, as specified in 
the Paris climate agreement [9-11]. There are two main 
approaches to controlling carbon emissions: transition from 
fossil fuels to low-carbon energy sources on the supply side, 
and reduction of CO2 emissions by various end-use sectors 
on the demand side [12]. In addition, carbon markets also 
can be regarded as an effective tool [13]. As the largest 
source of emissions by sector, the electricity industry will 
experience great pressure in terms of both internal operating 
mechanisms and external environments. Therefore, in a 
carbon-constrained world, policy makers worldwide should 
consider both carbon markets and electricity markets.

As the effective methods of controlling climate change 
and global warming, the carbon market and electricity 
market have been researched widely by many scholars. For 
the former, carbon tax, forest carbon sinks, green electricity 
certificate trading clean development mechanism (CDM), 
and Emission Trading Scheme (ETS) may be the efficient 
ways to reduce CO2 emissions, such as carbon tax studied 
by different perspectives in [14-15]; [16-17] studied on 
carbon sinks in Philippines uplands and EU, respectively; 
[18] reviewed on increasing share of renewable energy 
by green electricity certificate trading system and [19] 
established a case study for green certificate trading system. 
The CDM was investigated in many developing countries 
or newly developed countries such as Korea and Malaysia 
in [20]. ETS was studied from an enterprise level [21], 
and macro level [22]. For the part of the electricity market, 
the efficiency of generation, transmission and utilization 
[23], the production sources of electricity [24], and the 
technology in the processes of electricity distribution, 
transmission, and utility [25] are now relatively key 
factors for emissions reduction. Some scholars studied 
the efficiency of generation, transmission and utilization 
from the electricity service-side such as integrated carbon 
capture and storage [26] and renewable and nuclear energy 
technologies [27], and electricity demand-side such as 
electrifying transportation and heating sectors [28]. It was 
found that to implement home-based micro-generators or 
centralized renewable energy plants could help to cut down 
the foot-prints in the electricity sector [29]. Some scholars 

hold the opinion that renewable energy electricity will 
necessarily contribute to lesser carbon emissions [30-31]. 
There was also evidence that carbon emission reduction 
could be realized through technological advancements in 
the processes of electricity distribution, transmission, and 
utility, such as electric energy storage [32], the efficiency 
of electric equipment and facilities, and Plug-in Hybrid 
Electric Vehicles [33].

However, the carbon market and electricity market 
operated independently and lacked effective coordination, 
which seriously restricted the sustainable development of 
global energy and was not conducive to reducing emissions. 
Fortunately, in recent years, the development rapidly and 
connection closely between the electricity market and 
carbon market make it possible to study the joint electricity 
and carbon market. Since the 1990s, due to the reform 
of electricity marketization, the transnational electricity 
market was emerging. For example, the EU has established 
its transnational electricity market since 2000, which has 
expanded from the four northern European countries to 
the many countries of the European continent, and has 
now formed a transnational electricity market covering 31 
countries, 530 million people [34]. Besides, the number 
and size of carbon markets in the world are growing, and 
different carbon markets have shown a trend towards 
cooperation [35]. For instance, a joint carbon market has 
been established between the U.S. and Canada; the carbon 
market of the EU and the Swiss are promoting market 
connection; a plan of the joint carbon market between 
China, Japan and South Korea is also under discussion.

The connection between electricity market and carbon 
market is mainly in three aspects: 1) as the largest share 
of carbon emissions, the electricity industry is the main 
participant of carbon market; 2) many countries are 
promoting electricity marketization and establishing carbon 
market simultaneously; 3) there is a strong correlation 
between electricity price and carbon price. Those conditions 
have provided an opportunity for the study of joint 
electricity and carbon market. In addition, most of the 
existing research only focused on the joint electricity and 
carbon market from electricity market or carbon market, 
respectively. Indeed, neglecting the impact of any market 
may lead to an imperfect model which will weaken the role 
of joint electricity and carbon market in controlling carbon 
emissions and global warming. Compared with the previous 
model considering only carbon market or electricity market, 
this paper explores the relationship between joint electricity 
and carbon market and development of renewable energy, 
and establishes a joint electricity and carbon market model, 
which intends to find the pathways of renewable energy 
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transition under the transactional energy interconnection 
framework. The contributions of this paper can be 
summarized as:

A joint electricity and carbon market model is proposed 
to investigate the relationships between electricity price, 
carbon price, and power generation capacity.

A pathway toward renewable energy transition is 
simulated for different zones, based on the Northeast 
Asia power grid, and the impact of interconnection on the 
pathway is compared.

The remainder of this article is organized as follows. In 
Section 2, coupling between electricity and carbon markets 
is discussed, and a model for a joint electricity and carbon 
market is proposed. Section 3 presents a case study tested 
on the Northeast Asia power grid. Section 4 draws main 
conclusions.

2	 Joint electricity and carbon market
2.1	� Market coupling of electricity and carbon 

markets

A joint electricity and carbon market in Northeast 
Asia would aim to achieve long-term structural change in 
transnational energy systems, termed a renewable energy 
transition [36], in which renewables rather than fossil 
energy would be the main energy sources guaranteeing 
sufficient capacity to meet energy demand. Essentially, the 
joint electricity and carbon market is established based on 
the close connection between electricity markets and carbon 
markets, especially for the coupling relationship between 
electricity price and carbon price, as shown in Fig. 1.

It can be observed that a closed relationship exists 
among the carbon price, electricity price, renewable energy 
generation, and carbon emission requirements. When carbon 
prices increase, so do the operation costs of conventional 
power generation, which forces thermal power plants to raise 
the electricity price in order to guarantee profitability [37]. 
A higher electricity price will place thermal power plants 
at a competitive disadvantage, such that renewable energy 
plants will supply more load demand because of their lower 
electricity price [38]. As power generation from renewables 
takes a larger share than conventional power generation, the 
need to utilize carbon-emitting energy sources will decline 
and the carbon price will decrease due to the declining 
requirement for carbon emission permits [39]. 

As the main participant in the joint electricity and carbon 
market, the electricity market consumes more renewable 
energy because of its lower margin price [40]. This provides 
a market signal for decision makers to facilitate greater 
investment in developing renewable energy power plants to 

pursue higher profits compared with the lower benefits of 
thermal power plants. Consequently, renewably generated 
energy will account for a larger share of energy trading 
in the electricity market, which further motivates the 
renewable energy transition. Furthermore, carbon emission 
trading helps participants in the carbon market (i.e., thermal 
power plants) achieve their carbon emission reduction 
targets in a more economical way [41]. It should be noted 
that carbon emission reduction and renewable energy 
transition are not unconnected but instead closely coupled 
through the joint electricity and carbon market. In particular, 
a reduction in carbon emissions will promote the renewable 
energy transition [42] as aforementioned, and the renewable 
energy transition will further facilitate the process of carbon 
emission reduction [43].

2.2	 Joint electricity and carbon market model

The electricity price and carbon price are the main 
driving factors for renewable energy trading and carbon 
emission trading in the joint electricity and carbon market. 
Based on this, a joint electricity and carbon market model 
is proposed to investigate the impact of carbon price on 
the energy balance and the influence of electricity price 
on capacity planning. Essentially, the joint electricity and 
carbon market model is a dynamically iterative optimization 
model. As shown in Fig. 2, the proposed model consists of 
nested upper-level and lower-level models. The upper-level 
model in time t is to optimize energy production and obtain 
the corresponding electricity price. The lower-level model 
in time t is to update the carbon price and calculate the 

Fig. 1  Market coupling between electricity market and 
carbon market
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capacity of renewable energy, based on the electricity price 
and optimal energy generation transferred from the upper 
level. Subsequently, the updated carbon price and renewable 
energy capacity are fed back into the upper-level model at 
time t+1, to continue the iterative process until the upper-
level model is optimized (at time T). 

Energy 
optimization

Electricity pricing 

Carbon price and 
capacity plan 

updating

Energy  
optimization

Electricity pricing 

Carbon price and 
capacity plan 

updating

Energy 
optimization

Electricity pricing 
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...

...

t=1 t=2 t=T

Fig. 2  Framework of dynamically iterative optimization model

2.2.1	 Energy optimization and electricity pricing
Fora given time [1, , ]t T∈ � , the upper-level model can 

be developed as

           � (1)

s.t.  � (2)

       � (3)

       � (4)

      � (5)

The objective function minimizes the total cost over a 
period, including the operational cost and carbon emission 
cost of conventional power generation in all zones, 
where Nz is the number of zones. Ei,t, ai, ui,t, and αi,t are 
the power generation of fossil-fueled generation units, 
fuel cost coefficients, carbon price, and carbon emission 
factor in zone i at time t, respectively. The generation 
and load demand should be balanced at each time period 
as (2) saying. REi,t and Di,t are the power generated by 
renewable energy units and the load demand in zone i at 
time t. Yl,t is the power generation transferred on tie line l 
at time t. Parameters Ωi and Φi are the sets of inflows and 
outflows, respectively, for zone i. Nl is the number of tie 
lines. The power flow on tie lines should be limited within 
the allowable range as shown in (3), where Yl,max is the 
maximum transmission capacity of tie line l. Equations 
(4)–(5) represent the power generation limits of the fossil-
fueled generation units and renewable energy generation 
units in each zone over the given period. Pi, t and Ri,t are the 
total capacity of conventional power generation units and 
renewable energy generation units, respectively, in zone i 
at time t. Parameters hi,t and hri,t are the annual utilization 
hours of Pi, t and Ri,t.

The optimal power generation in each zone and 
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transferred power generation among zones can be obtained 
by solving the proposed model (1)–(5). The model also 
allows calculation of the electricity price. Define the 
multipliers corresponding to the constraints of equations (2)–
(5), giving

� (6)

Moreover, the Lagrange function of model (1)–(5) is 
shown as:

� (7)

The electricity price can be defined as the incremental 
capacity cost relative to the incremental load demand, such that

�
(8)

Note that the electricity price ,i tλ  herein is the electricity 
price for the current model at time t.
2.2.2	 Carbon price and capacity plan updating

With optimal power generation achieved in each 
zone, the carbon price can be computed by (9), which 
demonstrates the impact of carbon emission on the carbon 
price.
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Here, ui,t+1 is the updated carbon price in zone i at time t.  
αi,t Ei,t and Ci,t are the carbon emission and the carbon 
emission targets in zone i at time t. w1 is the step to quantify 
the variation of carbon price, and ε is the disturbance of 
carbon price from external factors including the carbon 
emissions from fossil fuel consumed by the industrial, 
construction, and transportation sectors. Obviously, if the 
carbon emission αi,t Ei,t is more than the carbon emission 
target Ci,t at time t, the carbon price in the following period 
will see a reasonable growth due to the urgent carbon 
emission requirements. On the other hand, the carbon price 
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at time t+1 will decrease because the carbon emission 
requirements will be easily satisfied.

Moreover, the zonal capacity of renewable energy 
generation units and conventional power generation units 
in the following period can be updated as (10) and (11), 
respectively.

� (10)

            � (11)

Here, Ri, t+1 and R0
i, t+1 are the actual capacity and the planned 

capacity of renewable energy generation units in zone i. ,i tλ  
is the optimal electricity price obtained by (6)–(8) at time t, 
and , 1i tλ −  is the given electricity price ,0iλ  or the electricity 
price obtained from model at time t-1. Here, , , 1i t i tλ λ −>  
means that the electricity price increases to hedge against 
incremental carbon emission cost, which in turn promotes 
the development of renewable energy generation. w2 is 
the step to quantify the incremental capacity of renewable 
energy generation units. Note that , 1 ,i t i tλ λ− occurs without 
a reduction in renewable energy capacity, because the 
planned capacity R0

i, t+1 should be guaranteed through long-
term planning. Moreover, the updated Ri, t+1 should not 
be less than Ri, t in practice, because the capacity built at 
time t could be utilized at time t+1. The actual capacity of 
conventional power generation units (Pi, t+1) is set as the 
planned value (P0

i, t+1) as shown in (11).

2.3	 Flowchart of the proposed model

It should be noted that there are T subproblems in 
the proposed model, coupled with the electricity prices, 
carbon prices, and the capacity of renewable energy 
generation units. Initially, the optimal power generation by 
conventional and renewable energy facilities (Ei, t and REi, t) 
are obtained by solving (1)–(5) with the given parameters 
such as load demand Di, t, carbon price ui, t, capacity of 
conventional power generation units Pi, t, and renewable 
energy generation units Ri, t etc. The carbon price ui, t+1 can 
then be updated by (9), and the capacities of renewable 
(Ri, t+1) and conventional (Pi, t+1) power generation units can 
be updated with the difference between electricity price 

,i tλ  and , 1i tλ −  as shown in (10)–(11). Subsequently, the 
coupled parameters (ui, t+1, ,i tλ , and Ri, t+1) are delivered to 
the sequential sub-problem until the final sub-problem 
at end-time T. Obviously, the optimal solution to each 
subproblem concerning Ei, t , REi, t, Pi, t+1 and Ri, t+1 will form 
a pathway for energy transition. The whole flowchart is 
shown as Table1.

Table 1  Flowchart for a joint electricity and carbon market 
model

1:
Initialize: 1t ← ,T, ai, w1, w2, ε;

,0iλ , ui,t, Pi,t, Ri,t for each i;

,i tα , Di,t, Ci,t, hi,t, hri,t, P
0
i,t, R

0
i,t, for each i and each t

2: While t≤T do

3: For i=1,…,Nz do

4: Solve (1)-(5) and compute ,i tλ  by (6)-(8) 

5: Save Ei,t, REi,t and ,i tλ

6: Update ui,t+1, Ri,t+1 and Pi,t+1 by (9)-(11)

7: Save ui,t+1, Ri,t+1 and Pi,t+1

8: End For

9: 1t t← +

10: End While

3	 Case study

Countries in Northeast Asia have close economic 
relations and strong energy complementarity. With the 
development of global energy interconnection, they are 
actively seeking transnational cooperation on electricity 
trading and carbon emission trading [44]. However, there 
is no mature transnational electricity market and carbon 
trading market so far for these transactions. For electricity 
market, Russia, Republic of Korea, Japan, China and 
Mongolia have developed a domestic electricity market [45-
47]. For carbon market, China has come a long way toward 
the construction of a carbon-trading market and will launch 
a national carbon market in 2020. Republic of Korea has 
developed a national carbon market and Japan has some 
subnational carbon market [48]. But no regional electricity 
market or carbon market exists in Northeast Asia, let alone 
the joint electricity and carbon market.

Therefore, the proposed joint electricity and carbon 
market model is tested on a planned Northeast Asia power 
grid where all the participating countries have an interest 
in enhancing power interconnection within the sub region 
in order to promote greater renewable energy penetration, 
reduce the carbon emissions of power systems, and finally 
realize the renewable energy transition [36]. All the 
experiments are carried out using Cplex 12.9 decision-
optimization software on a computer with an Intel Core 7 
CPU (3.60 GHz).

3.1	 Experimental setting

The proposed Northeast Asia power grid consists of 
six major zones, including the Russian Far East (RFE), 

0
, 1 , 1, 1,...,i t i t zP P i N+ += =
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Mongolia (M), North & Northeast China (NNC), Japan (J), 
Republic of Korea (ROK) and the Democratic People’s 
Republic of Korea (DPRK). The framework of grid 
interconnections among the six zones is depicted in Fig. 3 
[41]. It is worth noting that the proposed model is a long-
term planning problem spanning several decades, from 
2020 to 2050, with intervals of one year. In this way, the 
load demand and carbon emission targets in each zone are 
shown in Fig. 4 and Fig. 5. Note that not all tie lines are 
available to transfer generated power at the start time (i.e., 
2020), because tie lines RFE-NNC and RFE-ROK will be 
available in 2030, and tie lines NNC-J in 2040. The tie line 
transmission capacities are shown in Fig. 6 [49]. Moreover, 
Fig. 7 reveals the carbon emission factors of each zone in 
scenarios with and without carbon capture and storage (CCS) 
[50]. Finally, the initial electricity price and carbon price in 
each zone are demonstrated in Table 2 [51].

Table 2  Initial electricity price and carbon price in each zone

Zone

Initial value

Electricity price
($/kWh)

Carbon price
($/tons)

Russian Far East 0.07 20

Mongolia 0.07 21

North & Northeast 
China

0.08 35

Japan 0.22 40

DPRK 0.07 26

ROK 0.12 33

ROK

DPRK

Russian

Fig. 3  Framework of Northeast Asia power grid 
interconnection
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3.2	 Results

The electricity price, carbon price, and installed capacity 
in each zone of the Northeast Asia power grid from 2020 to 
2050 are shown in Fig. 8 with steps w1 and w2 set as 2 and 
30, respectively. 

As shown in Fig. 8(a), the electricity price and carbon 
price in the Russian Far East reveal a smooth trend from 
2020 to 2040, with only a small fluctuation in 2022 that 
causes a visible increase for the planned capacity of 
renewable energy generation. This is because the capacity 
and power generation of thermal power generation and 
renewable energy are developed gradually. However, the 
capacity of renewable energy generation increases sharply 
in 2042 because of the incremental electricity price during 
the previous year, and the following years see a sharp drop 
in electricity price (even to zero) due to sufficient renewable 
energy generation. As a result, the carbon price gradually 
declines. 

Fig. 8(b) shows the electricity price, carbon price, and 
capacity in Mongolia. Obviously, the trends for electricity 
price and carbon price are similar. However, they do 
not monotonically decrease over the whole period, but 
increase visibly from 2020 to 2032. Actually, the carbon 
price increases in this period due to the transferred power 
demand of North & Northeast China, as shown in Fig. 9. 
Much more thermal power is generated in Mongolia with 
less cost to supply the power shortage of North & Northeast 
China. After that, carbon price and electricity price reduce 
as soon as the transferred power from Mongolia to North & 
Northeast China decreases.

Fig. 8(c) shows a strong coupling relationship between 
electricity price and carbon price in North & Northeast 
China. That is, electricity price volatility is always behind 
that of carbon price volatility, but keeps the same trade 
as carbon price over the whole period. During the early 
period of the modeled period (approximately 2020 to 2040), 
renewable energy capacity in North & Northeast China 
reaches a much higher level than in other zones, which in 
turn cuts thermal power generation and further decreases 
the prices of carbon and electricity. An interesting condition 
occurs, wherein the total combined capacity of thermal 
power generation and renewable energy generation is 
decreasing during this period. This is because the capacity 
of renewable energy generation remains same, but fossil 
capacity decreases gradually as planned, which means that 
the sufficient renewable energy generation enables North & 
Northeast China to achieve its carbon emission targets much 
more easily without the need to install more renewable 
capacity. In the late stage, the carbon emission targets are 

too strict and carbon price increases again, together with 
the electricity price. As a result, the capacity of renewable 
energy generation increases. 

A similar condition occurs in Japan and ROK, as shown 
in Fig. 8(d) and Fig. 8(f): The capacity of thermal power 
generation and renewable energy generation develops 
as planned, and electricity and carbon prices decrease 
gradually in the early stage as expected, but decline slightly 
faster during 2030 to 2050. This is because the transmission 
capacity of tie lines RFE-J, ROK-J, DPRK-ROK, and NNC-
ROK are expanded 5, 3, 3 and 9 times, as shown in Fig. 6. 
More generation is transferred into Japan and ROK, and 
self-produced thermal power generation decreases, which 
results in declining carbon and electricity prices. Fig. 8(e) 
reveals the relationships between electricity price, carbon 
price, and capacity in DPRK. The same process as North & 
Northeast China occurs in DPRK during the periods 2020–
2037, 2038–2047, and 2048–2050.
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Fig. 8(a)  Electricity price, carbon price, and installed 
capacity in Russian Far East
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capacity in Mongolia
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Obviously, the tie lines play a vital role in maintaining 
the power balance among the six zones, and further 
influence the structure of electricity production. Fig. 9 
shows the direction of transfer and the approximate power 
generation in the tie lines. Fig. 10 shows the zonal power 
generation in two scenarios, namely with and without 
interconnection.

As shown in Fig. 10(a), there is an apparent difference 
in the Russian Far East zone between the two scenarios (with 
and without interconnection). In the early stage, thermal 
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Fig. 8(f)  Electricity price, carbon price, and installed capacity 
in ROK
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Fig. 8(c)  Electricity price, carbon price, and installed 
capacity in North & Northeast China
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capacity in Japan

Fig. 8(e)  Electricity price, carbon price, and installed 
capacity in DPRK
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Fig. 9  Transferred power generation in tie lines

power generation and renewable energy generation do not 
appear much different between the two scenarios because 
the RFE-NNC and RFE-DPRK tie line are not operational 
until 2030, and the capacity of the existing tie ling RFE-J is 
not sufficient to produce an obvious difference. However, 
during the period from 2030 to 2040, tie line RFE-NNC is 
available and RFE-J is expanded for the Russian Far East 
to transfer more power generation to North & Northeast 
China and Japan. Note that thermal power generation 
increases in this period due to the interconnection, because 
marginal cost in the Russian Far East is lowest compared 
with the other two zones. After that, the renewable 
energy generation shows a rapid increase 2041, as shown in  
Fig. 8(a) and much more power is generated from renewables 
compared with the scenario without interconnection. It is 
obvious that renewable energy generation satisfies the load 
demand of the Russian Far East zone, and surplus power 
generation is transferred to North & Northeast China, Japan, 
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and DPRK in the scenario with interconnection. That is 
to say, interconnection enables the Russian Far East zone 
to accelerate the process of replacing traditional energy 
with renewable energy, even realizing “net zero” carbon 
emissions before 2050.

For Mongolia, as shown in Fig. 10(b), the most 
apparent difference between two scenarios occurs during 
the period from 2020 to 2030, in which much more power 
is generated in the scenario with interconnection, to supply 
the load demand of Mongolia and North & Northeast China 
through M-NNC. Subsequently, the power transferred from 
Mongolia to North & Northeast China declines to zero 
because sufficient generation capacity is set up in North & 
Northeast China, after which power generation remains the 
same in the two scenarios.

Fig. 10(c), Fig. 10(d), and Fig. 10(f) reveal power 
generation under the two scenarios in North & Northeast 
China, Japan, and ROK, respectively. Prior to 2030, ROK 
generates slightly more thermal power to supply Japan 
through ROK-J in the scenario with interconnection. 
Apart from this, power generation in the three zones 

is roughly consistent in the scenarios with and without 
interconnection. However, compared with the scenario 
without interconnection, thermal power generation in North &  
Northeast China and the Russian Far East increases to 
satisfy the load demand in ROK and Japan by tie line 
NNC-ROK and RFE-J, respectively, from 2030 to 2040. 
As a result, thermal power generation in ROK and Japan 
decreases. After 2040, more power generation is transferred 
into Japan by NNC-J, which causes a further decline in 
thermal power generation in Japan. Power generation in 
ROK is influenced by the power transferred from DPRK, 
but the difference is visible from the graphs. 

It can be observed in Fig. 10(e) that the interconnections 
between zones have an obvious impact on the power 
generation of DPRK. Prior to 2040, tie line DPRK-ROK 
transfers more power generation to ROK in the scenario with 
interconnection. There is also a slight increase in thermal 
power generation in 2030 because of the capacity expansion 
for DPRK-ROK. After that, with the increasing capacity 
provided by renewables, much more power generation is 
transferred while satisfying demand in the DPRK.
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without interconnection
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Fig. 10(d)  Power generation in Japan with and without 
interconnection
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effect is that it eases the stress of realizing the energy 
transition, because the CCS scenario requires only 80.21% 
of renewable energy generation capacity compared with 
82.72% in the scenario without CCS. In other words, 
there is less urgency to install additional renewable energy 
capacity in order to meet the emission reduction targets.

4	 Conclusions

Based on the market coupling of electricity and 
carbon markets, this paper proposed a joint electricity 
and carbon market model to identify potential pathways 
to a renewable energy transition under the transactional 
energy interconnection framework. The proposed model 
is a dynamically iterative optimization model consisting 
of upper-and lower-level models. The upper-level model 
optimizes power generation and obtains electricity price, 
whereas the lower-level model updates the carbon price 
and the capacities of thermal power and renewable energy 
generation. The proposed model is verified on the Northeast 
Asia power grid. The results show that interconnection 
among the network zones will enable zonal power 
generation to be allocated in a reasonable way. CCS will 
significantly reduce the carbon emissions in 2030-2050 
which helps reduce the stresses on realizing the energy 
transition by limiting capacity additions of renewable 
energy. Essentially, the proposed model presents a practical 
solution for joint electricity and carbon market which will 
be a helpful model for policymakers when developing the 
energy transition pathway. Low carbon technologies, e.g. 
CCS, can be an effective supplement for policymakers to 
further reduce carbon emission. In the future, the carbon 
emission from industrial, construction and transportation 
sectors will be discussed in detail in the joint electricity and 
carbon market model.
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