Similarity matching method of power distribution system operating data based on neural information retrieval
2023-03-28
【论文推荐】中国电力科学研究院王晓辉等:面向配用电网运行数据相似性匹配的神经信息检索技术研究
摘要
随着配用电系统规模和复杂度的增加,以及可再生能源的广泛接入,电力系统运行控制难度随之加大,亟需提升其在数据驱动运行管理和智能分析挖掘方面的能力。为深入挖掘配用电系统历史运行断面数据相似性规律,辅助电网准确获取高价值的历史运维经验和知识,基于图数据计算技术,提出融合注意力机制的神经信息检索模型。根据配用电系统运行数据处理流程,建立了神经信息检索技术框架;结合配用电系统天然具备的图特征,构建了数据接入、数据补齐和多源数据的统一图数据结构与数据融合方法;进一步,构建了图节点特征嵌入表示学习算法和神经信息检索算法模型,利用生成的图节点特征表示向量集进行神经信息检索算法模型训练与测试。利用该模型在某省公司配用电系统运行断面数据上进行验证,结果表明,所提方法对历史运行特征的相似性匹配具有较高的准确性,可有效支撑配用电系统故障智能诊断与运维消缺工作。
Similarity matching method of power distribution system operating data based on neural information retrieval
面向配用电网运行数据相似性匹配的神经信息检索技术研究
Kai Xiao1, Daoxing Li1, Pengtian Guo1, Xiaohui Wang1, Yong Chen1
(1. China Electric Power Research Institute Co. Ltd., Beijing 100192, P. R. China)
收听作者1分钟语音介绍
Abstract
Keywords
Neural information retrieval, Power distribution, Graph data, Operating section, Similarity matching.

Fig.1 Neural information retrieval technology framework for operating section of the power distribution system

Fig.2 Neural information retrieval model framework

Fig.3 Retrieval process of power distribution historical operating section
本文引文信息
Xiao K, Li DX, Guo PT, et al (2023) Similarity matching method of power distribution system operating data based on neural information retrieval. Global Energy Interconnection, 6(1): 15-25
肖凯,李道兴,郭鹏天等 (2023) 面向配用电网运行数据相似性匹配的神经信息检索技术研究. 全球能源互联网(英文), 6(1): 15-25
Biographies

Kai Xiao
Kai Xiao received master degree at North China Electric Power University, Baoding, in 2013. He is working in China Electric Power Research Institute Co., Ltd. His research interests include power big data technology, power graph computing and power marketing business.


Daoxing Li
Daoxing Li received master degree at North China Electric Power University, Beijing, in 2021. He is working in China Electric Power Research Institute Co., Ltd. His research interests include artificial intelligence and graph computing.


Pengtian Guo
Pengtian Guo received master degree at North China Electric Power University, Beijing, in 2020. He is working in China Electric Power Research Institute Co., Ltd. His research interests include power Internet of things and artificial intelligence.


Xiaohui Wang
Xiaohui Wang received the Doctor’s degree from North China Electric Power University, Beijing, 2012.He is currently working at the China Electric Power Research Institute Co., Ltd. Beijing. His research interests include power big data technology, artificial intelligence, active distributed network, energy internet.


Yong Chen
Yong Chen received the Doctor’s degree from Huazhong University of Science and Technology, Wuhan. He is working in China Electric Power Research Institute Co., Ltd. His research interests include high performance computing, artificial intelligence.
编辑:刘通明
审核:王 伟
郑重声明
根据国家版权局相关规定,纸媒、网站、微博、微信公众号转载、摘编本网站作品,需包含本网站名称、二维码等关键信息,并在文首注明《全球能源互联网》原创。 个人请按本网站原文转发、分享。
