Journal of Global Energy Interconnection

文章编号: 2096-5125 (2021) 03-0226-09 DOI: 10.19705/j.cnki.issn2096-5125.2021.03.003 中图分类号: U473; X820.3

文献标志码: A

基于复杂网络理论的城市电网储能电站启发式 选址和评估方法

李景华¹, 化晨冰¹, 蒋德玉¹, 曹严^{2*}, 吴奎华³, 穆云飞²

(1. 国网山东省电力公司临沂供电公司,山东省 临沂市 276003;

2. 天津市智慧能源与信息技术重点实验室 (天津大学), 天津市 南开区 300072;

3. 国网山东省电力公司经济技术研究院,山东省 济南市 250021)

Heuristic Locating and Evaluation Method of an Energy Storage Power Station in an Urban Power Grid Based on Complex Network Theory

LI Jinghua¹, HUA Chenbing¹, JIANG Deyu¹, CAO Yan^{2*}, WU Kuihua³, MU Yunfei²

(1. State Grid Linyi Power Supply Company, Linyi 276003, Shandong Province, China;

2. Key Laboratory of Smart Energy & Information Technology of Tianjin Municipality (Tianjin University),

Nankai District, Tianjin 300072, China;

3. Economic & Technology Research Institute of State Grid Shandong Electric Power Company, Jinan 250021, Shandong Province, China)

Abstract: A reasonable location is the premise for promotion of the efficiency of energy storage power station (ESPS) efficiency. A heuristic method based on complex network theory is proposed for the ESPS locating and evaluation of ESPS in an urban power grid, which includes the ESPS candidate site scheme initial selection layer, scheme decision, and evaluation layer. First, at the initial selection layer, based on the complex network theory, the urban power grid is expressed as a complex network graph according to the topological structure, line admittance, and impedance. According to the comprehensive index integrated with betweenness centrality, closeness centrality, and node load, key system nodes are screened out, which are used as the heuristic rules to generate the candidate ESPS site schemes. Furthermore, in the scheme decision and evaluation layer, the optimal power urban power grid flow model is established with minimum network loss as the objective. Then, the candidate scheme with the lowest network loss is considered as the final ESPS locating scheme, and its effects on peak load cutting and voltage fluctuation suppression are evaluated. Finally, the effectiveness of the proposed method is verified by considering the IEEE 30 bus system as a case study. The results demonstrate that the proposed method does not require a significant amount of historical data and optimization calculation, and can quickly determine the ESPS

基金项目: 国网山东省电力公司科技项目(5206071800D9)。 Science and Technology Foundation of State Grid Shandong Electric Power Company (5206071800D9). candidate sites, reduce the system network loss, smooth the load curves, and stabilize the system voltage fluctuation.

Keywords: urban power grid; energy storage power station; complex network theory; heuristic location

摘 要:合理的选址规划是促进储能电站(energy storage power station, ESPS)在城市电网层面效能发挥的前提。基于 复杂网络理论的城市电网储能电站启发式选址和评估方法可 以为此提供解决方案,该方法分为ESPS候选站址方案初选层 和方案决策与评估层。首先在初选层,基于复杂网络理论, 根据城市电网的拓扑结构、线路导纳和阻抗参数,将其表示 成复杂网络图,并根据融合节点介数、邻近中心性及节点负 荷大小的综合指标筛选出电网关键节点,作为启发式选址规 则,生成ESPS候选站址方案;进而在决策与评估层,以网 损最小为目标建立城市电网最优潮流模型,将网损最小的候 选站址作为最终选址方案,并评估其在电网削峰填谷、电压 波动抑制等方面的作用。以IEEE30节点系统为例,验证了该 方法的有效性。结果表明该方法无需大量历史数据及优化计 算,可快速确定ESPS选址位置,辅助降低系统网损、平滑负 荷曲线以及平抑系统电压波动。

关键词:城市电网;储能电站;复杂网络理论;启发式选址

0 引言

近年来,随着储能技术的发展,城市电网逐渐从

"源网荷"体系向"源网荷储"系统升级转变^[1]。储能 系统可为电网运行提供调峰调频、需求响应等多种服 务,对平抑电网功率波动、提升可再生能源消纳水平 等具有重要价值^[2-3]。在诸多储能利用形式中,储能电 站(energy storage power station, ESPS)因具有能量 密度大、功率高、充放电速度快、安装地点灵活等优 势,近年来在各地获得迅速发展^[4],如南京江北储能 电站^[5]、江苏建山储能电站^[1]等。在ESPS前期规划设 计中,ESPS的安装位置和接入容量会对网络潮流、电 能质量和运行可靠性产生重要影响^[6],需要对ESPS进 行合理规划,才能使其与电网运行紧密结合,充分发 挥其各方面优势^[7]。

目前ESPS选址和容量规划方面已有大量研究。文 献[8]提出一种基于电压灵敏度分析的启发式策略对 ESPS的位置进行确定,可有效避免系统过电压和欠电 压情况的出现。文献[9-10]以系统节点电压波动、负 荷波动以及ESPS的总容量为目标建立了ESPS选址定 容优化模型,并采用改进多目标粒子群算法进行求 解。文献[11]提出了一种考虑可再生能源出力不确定 性的ESPS选址定容双层规划模型,模型的外层采用分 支定界法确定ESPS的选址位置,内层采用改进遗传算 法得到最优容量配置与ESPS充放电运行策略。文献 [12]提出了考虑韧性的ESPS规划运行两阶段随机优化 方法,计及了极端事件影响,提高了电网应对极端灾 害的能力。然而上述ESPS的选址方法(本文称之为 传统方法)需要大量系统历史负荷及发电数据,并需 要求解混合整数非线性规划问题,当系统规模较大时, 选址方案的求解面临不收敛、耗时过多等问题[13-14]。 如何结合城市电网拓扑结构、潮流分布、线路参数 等,解决ESPS的选址问题,是本文关注的重点。考 虑到城市电网本身就是一个典型的复杂网络[15],其母 线可以视为复杂网络图的节点,各条线路可以看作 复杂网络图的边^[16],从而为本文方法研究提供了理论 支撑。

部分研究已将复杂网络理论应用于电网的规划、 薄弱节点辨识、可靠性评估等。文献[15-16]建立了基 于复杂网络理论的系统脆弱性评估方法,从系统网络 拓扑的角度提出了包含节点以及系统整体的可靠性评 估指标,为系统规划提供了决策支持。文献[17]提出 了基于复杂网络理论的虚拟电厂配电网能效分析方 法,构建了有权值与无权值两种情况的能效指标。文 献[18]采用复杂网络分析方法对城市电网中微电网的 选址进行了研究,可增强电网弹性、降低系统损耗并 提高系统电压运行水平。文献[19]采用改进的复杂网 络模型建立了包含距离度、能力度、枢纽介数、距 离介数和能力介数的电网关键节点和支路的评价指 标集,可有效辨识可能触发电网大规模事故的关键 环节。

可以看出,复杂网络理论在城市电网研究中获得 了诸多应用,但尚未有研究将其应用于ESPS的选址工 作中。为此,本文提出了一种基于复杂网络理论的城 市电网ESPS启发式选址和评估方法。首先,基于复杂 网络理论对城市电网进行建模;进而计算各个节点的 节点介数、邻近中心性,以及融合二者和节点负荷大 小的综合指标,并以此为依据,筛选出关键节点作为 ESPS的候选站址;进一步,将不同候选站址方案带 入城市电网最优潮流模型,优选出网损最小的ESPS 站址方案,并对该方案在削峰填谷、减小电压波动等 方面的效果进行评估。算例结果表明本文方法无需大 量历史数据及优化计算,可快速确定ESPS选址位置, 辅助降低系统网损、平滑负荷曲线以及平抑系统电压 波动。

1 方法实现框架

基于复杂网络理论的城市电网ESPS启发式选址与 评估方法整体框架如图1所示。

1) 候选站址方案初选层

本层首先获取电网拓扑结构、节点负荷、线路导 纳、阻抗等信息;进而采用复杂网络理论,将城市电 网表示为复杂网络图,并计算各节点的节点介数、邻

近中心性,以及融合二者和节点负荷大小的综合指标,以评估不同节点重要性;在此基础上选择综合指标值最高的节点作为ESPS候选安装位置,采用排列组合法,初选出ESPS的候选站址方案,并将其传递给方案决策与评估层。

2) 方案决策与评估层

在方案决策与评估层,建立城市电网最优潮流模型,并根据第一层候选站址方案安装ESPS,计算此时系统在典型日的潮流分布,并将网损最小的候选方案确定为ESPS最终选址方案;最后,评估该方案在削峰填谷、电压波动抑制等方面给城市电网带来的效果。

2 基于复杂网络理论的储能电站候选站址初选

2.1 城市电网复杂网络建模

复杂网络通常由节点和边组成,其中节点是网络 基本元素,边连接网络中的各节点,描述元素之间的 相互关系,边的权重大小反映了其重要程度。

城市电网呈现高度复杂性,由数量众多的电源节 点、负荷节点以及电力线路构成,将城市电网中的发 电机、ESPS及负荷等节点简化为复杂网络图中的节 点,将线路转化为复杂网络图的边,根据指标计算需 求,将线路导纳或阻抗设定为边的权重。因此,本文 采用加权复杂网络图将城市电网表示为:

$$\boldsymbol{G} = (\boldsymbol{N}, \boldsymbol{E}, \boldsymbol{W}) \tag{1}$$

$$N = \{n_i\}, E = \{e_{ij}\}, W = \{w_{ij}\}$$
(2)

$$w_{ij} = \begin{cases} y_{ij}, & \text{if: 计算节点介数} \\ z_{ij}, & \text{if: 计算邻近中心性} \end{cases}$$
(3)

式中: G为复杂网络图; N、E分别为网络中所有节点 与边的集合; W为边的权重集合; n_i 为节点i; e_{ij} 为节 点i与j之间的边,表示输电线路; w_{ij} 为 e_{ij} 的权重; y_{ij} 和 z_{ij} 分别为 e_{ij} 所表示的输电线路的标准化导纳和阻抗。

2.2 城市电网ESPS候选站址初选

ESPS接入城市电网后,可通过充放电,平抑负荷 及电压波动,达到降低网损等效果。而城市电网的拓 扑结构、线路参数、负荷分布等决定了潮流分布,只 有将ESPS部署在系统关键节点,才能发挥ESPS效能。 在复杂网络理论中,某节点的节点介数和邻近中心性 2个指标反映了该节点与其他节点、边之间的距离远 近、连接关系强弱等,而节点的有功负荷大小反映了 系统负荷的分布。本文在指标计算过程中将线路的导 纳、阻抗作为边的权重,可有效结合城市电网的拓扑 结构及潮流分布特征,评价各节点的重要程度,筛选 出城市电网关键节点,作为ESPS的候选站址。

2.2.1 节点介数指标

复杂网络图中某节点的节点介数是指其他节点之间最短路径通过该节点的次数与所有最短路径数目的比值^[18]。在节点介数计算中,为反映网络潮流的影响,边的权重选取为对应线路的标准化导纳,其物理 意义为:连接到节点的线路导纳越大,潮流通过这个 节点的可能性就越大。

节点i的节点介数 b_i为:

$$b_i = \sum_{\substack{j,k \in N \\ i \neq k}} \frac{n_{jk}(i)}{N_{jk}} \tag{4}$$

式中: *N_{jk}*为节点*j*至节点*k*最短路径数目; *n_{jk}(i)*为节点 *j*至节点*k*同时通过节点*i*的最短路径的数目。

2.2.2 邻近中心性指标

节点邻近中心性的大小反映了节点与其他节点距 离的远近^[18]。某节点的邻近中心性定义为该节点和网 络中其他节点的平均最短路径。由于节点邻近中心性 和距离相关,对于线路,距离越大,阻抗越大,越不 利于潮流通过。因此,在邻近中心性的计算中,通常 将标准化阻抗作为边的权重。

节点i的邻近中心性 c_i为:

$$C_i = \left(\frac{v_i}{N-1}\right)^2 \frac{1}{C_i} \tag{5}$$

$$C_{i} = \sum_{k=1}^{v_{i}} w_{ik}, \quad w_{ik} = z_{ik}$$
(6)

式中: v_i表示节点i的邻近节点个数(不包括i); N表示 图**G**中节点数目; C_i表示从节点i到所有邻近节点的距 离之和; w_{ik}表示节点i与其邻近节点k相连的边的权重, 大小为其对应输电线路的标准化阻抗e_{ik}。如果从节点i 到其邻近节点没有路径,则c_i取值为0。

2.2.3 综合指标

此外,各节点的有功负荷(峰值)大小反映了系 统负荷分布情况,对ESPS的选址具有重要影响。为综 合反映节点介数、邻近中心性和负荷大小对节点重要 性的刻画,本文首先进行归一化,然后将归一化的指 标进行加权求和,得到各节点综合指标值为:

$$b_i^* = \frac{b_i - b_{\min}}{b_{\max} - b_{\min}} \tag{7}$$

$$c_i^* = \frac{c_i - c_{\min}}{c_{\max} - c_{\min}}$$
(8)

$$l_i^* = \frac{l_i - l_{\min}}{l_{\max} - l_{\min}} \tag{9}$$

$$z_i = w_1 b_i^* + w_2 c_i^* + w_3 l_i^* \tag{10}$$

式中: b_i^* 、 c_i^* 和 l_i^* 分别表示节点i的节点介数、邻近 中心性和有功负荷(峰值)的归一化指标值; l_i 表示 节点i的有功负荷(峰值); b_{min} 和 b_{max} 分别表示最小和 最大的节点介数; c_{min} 和 c_{max} 分别表示最小和最大的邻 近中心性; l_{min} 和 l_{max} 分别表示最小和最大的节点有功 负荷(峰值); z_i 表示节点i的综合指标值。 w_1 、 w_2 和 w_3 表示权重系数,满足 $w_1 + w_2 + w_3 = 1$ 。

进而,基于综合指标由大到小对节点进行排序, 筛选出前N_{CN}个节点作为ESPS的候选站址,从而极大 降低了ESPS可选择位置的数量,避免了高维度候选站 址的选择。最后,将这N_{CN}个节点通过排列组合,确 定出 C^{N_{ESPS}}个候选ESPS选址方案,其中,N_{ESPS}表示待 安装ESPS的数量。

3 储能电站选址方案决策与评估

3.1 最优潮流模型及ESPS选址方案的确定

3.1.1 目标函数

城市电网最优潮流模型以系统网损P_{Loss}最低为目标,即:

min
$$P_{\text{Loss}} = \int_{t=1}^{T} \sum_{l=1}^{N_{\text{L}}} R_l \frac{P_l(t)^2 + Q_l(t)^2}{V_l(t)^2} dt$$
 (11)

式中: T为调度周期包含的时段数; N_L 为城市电网线路总数; R_l 为线路l的电阻; $P_l(t) \ Q_l(t) \ P_l(t) \ A$ 为t时刻流过线路l的有功功率、无功功率和支路电压。

本文优化调度周期为24 h,为降低计算难度,将 复杂的积分离散化,即:

min
$$P_{\text{Loss}} = \sum_{l=1}^{24} \sum_{l=1}^{N_{\text{L}}} R_{l} \frac{P_{l}(t)^{2} + Q_{l}(t)^{2}}{V_{l}(t)^{2}} \Delta t$$
 (12)

式中: Δt 为调度周期,本文取1 h。

3.1.2 ESPS运行约束

本文ESPS采用电压控制逆变器进行控制,可在城市电网中视为PV节点^[20]。ESPS的运行需要满足如下约束^[21]:

1) ESPS充放电功率上下限约束

$$0 \leq P_{\rm c}\left(t\right) \leq P_{\rm c,max} \tag{13}$$

$$0 \le P_{\rm d}\left(t\right) \le P_{\rm d,max} \tag{14}$$

式中: $P_{c}(t)$ 和 $P_{d}(t)$ 分别表示t时刻ESPS的充电功率 与放电功率; $P_{c,max}$ 和 $P_{d,max}$ 为ESPS最大充电功率和放 电功率。

$$P_{\rm c}(t)P_{\rm d}(t) = 0$$
 (15)

3) ESPS荷电状态(state of charge, SOC)

$$S_{\rm OC}(t + \Delta t) = S_{\rm OC}(t) + \frac{(\eta_{\rm c} P_{\rm c}(t)\Delta t - P_{\rm d}(t)\Delta t / \eta_{\rm d})}{W_{\rm ESPS}}$$
(16)

式中: $S_{oc}(t)$ 为ESS在t时刻的SOC; η_{c} 和 η_{d} 分别为 ESPS的充电效率和放电效率; W_{ESPS} 为ESPS的配置 容量。

4) ESPS的SOC需满足上下限约束

$$S_{\rm OCmin} \leq S_{\rm OC}(t) \leq S_{\rm OCmax} \tag{17}$$

式中, S_{OCmax}和S_{OCmin}分别为ESPS的SOC上下限。

5) ESPS调度期初和期末的SOC需保持一致,保证ESPS的周期性调度需求

$$S_{\rm OC}(0) = S_{\rm OC}(T) \tag{18}$$

式中: $S_{oc}(0)$ 、 $S_{oc}(T)$ 分别为ESPS调度期初和期末的SOC。

3.1.3 城市电网运行约束

此外,最优潮流模型需满足城市电网的运行约 束,包括潮流方程约束、功率平衡约束、节点电压约 束等。

1) 潮流方程约束

$$P_i(t) = U_i(t) \sum_{j=1}^n U_j(t) [G_{ij} \cos \delta_{ij}(t) + B_{ij} \sin \delta_{ij}(t)] \quad (19)$$

$$Q_{i}(t) = U_{i}(t) \sum_{j=1}^{n} U_{j}(t) [G_{ij} \sin \delta_{ij}(t) - B_{ij} \cos \delta_{ij}(t)] \quad (20)$$

式中: $P_i(t) \approx Q_i(t)$ 分别为t时刻节点i注入的有功和无 功功率; $U_i(t) \approx U_j(t)$ 分别为t时刻节点i和节点j的电 压幅值; $\delta_{ij}(t)$ 为t时刻节点i与节点j之间的电压相角 差; $G_{ii} \approx B_{ij}$ 为节点导纳矩阵的对应元素。

2) 功率平衡约束
$$P_i(t) = P_{G,i}(t) + P_{dis,i}(t) - P_{ch,i}(t) - P_{L,i}(t)$$
 (21)

$$Q_{i}(t) = Q_{G_{i}}(t) - Q_{I_{i}}(t)$$
(22)

式中: $P_{G,i}(t)$ 和 $Q_{G,i}(t)$ 分别为t时刻节点i的可控发电机 组有功和无功出力功率; $P_{ch,i}(t)$ 和 $P_{dis,i}(t)$ 分别为t时刻 节点i的ESPS的充放电功率; $P_{L,i}(t)$ 和 $Q_{L,i}(t)$ 分别为t 时刻节点i的有功和无功负荷功率。

3) 节点电压上下限约束

$$U_{i,\min} \leq U_i(t) \leq U_{i,\max} \tag{23}$$

式中: U_{i,min}和 U_{i,max}分别为节点i的电压下限和上限。

4) 可控发电机组的运行约束

$$P_{\rm G} \leqslant P_{\rm G}(t) \leqslant \overline{P_{\rm G}} \tag{24}$$

$$\underline{Q}_{\rm G} \leqslant \underline{Q}_{\rm G}(t) \leqslant \overline{\underline{Q}_{\rm G}} \tag{25}$$

 $-r_{d}\Delta t \leq P_{G}(t) - P_{G}(t-1) \leq r_{u}\Delta t$ (26) 式中: $\overline{P_{G}}$ 、 $\underline{P_{G}}$ 、 $\overline{Q_{G}}$ 和 $\underline{Q_{G}}$ 分别为发电机组有功和无 功出力的上下限; r_{u} 和 r_{d} 分别为发电机组的向上和向 下爬坡速率。

考虑系统负荷季节性差异,构建各季节典型日负 荷场景。基于最优潮流模型,分别代入2.2节的ESPS 候选方案,计算系统安装ESPS后在各典型日场景下运 行的潮流及网损,将网损最小的候选方案作为最终的 ESPS选址方案。

3.2 ESPS选址方案评估

为评价所确定的ESPS选址方案的效果及对城市电 网的作用,除网损外,应评估城市电网安装ESPS前后 的削峰填谷效果和电压波动情况。

3.2.1 削峰填谷

ESPS可通过充放电过程,调节系统的负荷大小, 达到削峰填谷的效果。采用总负荷平滑度作为指标衡 量ESPS的削峰填谷效果,其计算公式为:

$$S_{\text{Load}} = \sum_{t=1}^{T} \left[L(t) + P_{\text{c}}(t) - (P_{\text{d}}(t)) - \bar{L} \right]^2$$
(27)

$$\overline{L} = \sum_{t=1}^{T} (L(t) + P_{\rm c}(t) - P_{\rm d}(t)) / T$$
(28)

式中: S_{Load} 为总负荷平滑度; L(t)为t时刻的负荷值; \overline{L} 为负荷曲线的平均值。

3.2.2 电压波动

ESPS接入系统后,通过合理充放电调度,可减小 系统节点电压波动。本文采用三维图刻画系统电压分 布情况,分析系统电压波动范围,以评估ESPS安装前 后抑制系统电压波动的效果。

4 算例分析

4.1 IEEE30节点系统

本节以图2所示的IEEE 30节点系统为例进行分析^[22]。 本文重点关注ESPS的选址,故假设ESPS容量已知。 根据系统的拓扑结构、负荷大小及规划要求^[6],拟配 备3台50 MW/200 MWh的ESPS,需对其安装位置进行 优选。系统各节点有功负荷(峰值)分布如图3所示。 为考虑不同季节系统负荷的差异,选取夏季、冬季和 过渡季3个典型日,假设各节点负荷变化情况相同, 以负荷最大值为基准,3个典型日各时刻负荷的标幺 值如图4所示。

首先将IEEE 30节点系统建模成复杂网络图,将

Fig. 5 Complex network graph of IEEE30 bus system

各母线表示成节点,将各条线路表示成边,如图5所 示,该复杂网络图由30个节点和41条边构成。

4.2 选址方案初选

计算图5中各个节点的节点介数、临近中心性, 如表1所示。为初步确定ESPS的候选站址方案,并突 出节点介数和邻近中心性两个指标的作用,令w₁、w₂ 和w₃分别取0.4、0.4和0.2,计算各节点的综合指标, 如图6所示。

节点 编号	节点 介数	邻近中心性	节点 编号	节点 介数	邻近中心性
1	2	0.037 57	16	8	0.040 794
2	28	0.041 14	17	18	0.041 507
3	0	0.037 896	18	23	0.040 242
4	126	0.051 342	19	4	0.032 32
5	34	0.042 97	20	7	0.035 456
6	208	0.052 748	21	0	0.031 265
7	57	0.049 101	22	42	0.037 667
8	0	0.036 862	23	24	0.036 848
9	28	0.038 094	24	54	0.030 453
10	161	0.047 808	25	37	0.025 163
11	0	0.026 385	26	0	0.017 861
12	125	0.048 605	27	54	0.024 411
13	0	0.032 721	28	63	0.044 617
14	0	0.040 05	29	0	0.019 412
15	81	0.045 568	30	28	0.020 425

表 1 各节点的节点介数和邻近中心性 Table 1 Betweenness centrality and closeness centrality of each vertex

根据上述结果,节点6、10、4和12的综合指标排 名前4,将其作为ESPS的候选站址。将这4个节点进行 排列组合,得到4组候选选址方案,即候选方案1:节 点6、10和4;候选方案2:节点6、10和12;候选方案 3:节点6、4和12;候选方案4:节点10、4和12。利 用基于复杂网络理论的候选站址作为ESPS启发式选址 原则,候选空间由4060(C₃₀)组降低为4组,可极大的 提升选址方案的确定效率。

Fig. 6 Comprehensive index value of each vertex

4.3 选址方案决策

T-11-0

进一步,计算采用4种候选方案安装ESPS后系统 在3个典型日的最优潮流,得到它们在3个典型日的总 网损如表2所示。

表 2	各候选方案的总网损	
Tatalaa	www.l.l.a.a.af.a.a.h.a.a.didata.a.h.	

Table 2	Total network loss of each candidate scheme					
候选方案	候选方案1	候选方案2	候选方案3	候选方案4		
网损/MWh	41.364 0	42.635 3	40.910 0	41.241 4		

如表2所示,候选方案3的总网损最小,固将其作 为最终的ESPS选址方案。

4.4 选址方案评价

分析ESPS安装后系统的网损、削峰填谷效果以及 电压波动情况,并对上述确定的选址方案(本节记为 方案1)的效果进行评价。此外,为展现本文采用复杂 网络分析方法进行选址的有效性,采用以负荷中心作 为选址依据的方案(节点5、3和10)作对比,记为方 案2。

4.4.1 系统网损

系统在ESPS安装前以及采用2个方案安装ESPS

后在夏季典型日的网损大小如图7所示。2个方案均使 得系统的网损降低,但是方案2仅有较小程度的降低; 而方案1使系统网损有较大幅度的降低,比安装前降 低了1.04 MWh,降幅约5.8%。说明采用本文方法进 行ESPS选址可以更有效地降低系统的网损。

4.4.2 削峰填谷效果

232

图8反映了系统在ESPS安装前以及采用2个方案安装后的夏季典型日实际负荷曲线,它们对应的总负荷 平滑度如图9所示。夏季典型日实际负荷曲线在原有 负荷曲线的基础上计及了ESPS的充放电情况。

采用2个方案安装ESPS后,可不同程度地抑制负荷的波动,使负荷曲线更加平缓。就效果而言,方案 2平缓负荷曲线的作用较小,而方案1较大幅度地平缓 了负荷曲线,达到了削峰填谷的效果。如图8所示, 在安装ESPS前,系统的负荷在2:00-5:00较低,处于 整个负荷曲线的谷值;而在10:00-16:00以及19:00-22:00这两个时间段负荷较高,处于整个负荷曲线的 峰值。当采用方案1安装ESPS后,由于ESPS的调峰作 用,2:00-5:00的实际负荷升高,而10:00-16:00以及 19:00-22:00的实际负荷降低,使得整条负荷曲线变 得较平稳。如图9所示,2个方案的总负荷平滑度均比 安装前有所降低,且方案1比方案2降低的幅度更大。 说明采用本文方法对ESPS进行选址可有效提升系统的 削峰填谷效果。

4.4.3 电压波动情况

ESPS安装前后系统在夏季典型日各个节点电压 的波动情况分别如图10(a)-10(c)所示。在ESPS安 装之前,系统节点电压的波动较剧烈,波动范围较 大,电压在[1.0069,1.0600]区间内波动。当ESPS安装 之后,方案2将节点电压的变化范围略微增大至区间 [1.0064,1.0600]内,加重了系统的负担,如图10(c) 所示,方案2节点电压波动仍较大。而方案1对节点电 压波动有很好的改善效果,将节点电压的变化范围缩 小至区间[1.0207,1.0600],且如图10(b)所示,方案 1的节点电压变化曲线较为平稳。

5 结论

本文提出了一种基于复杂网络理论的城市电网储 能电站启发式选址和评估方法,将城市电网转化成复 杂网络图,以结合节点介数、邻近中心性和节点负荷 大小的综合指标为依据,初选ESPS的候选站址方案, 进而采用最优潮流模型计算采用各候选方案后的系统 潮流,决策出使系统网损最小的选址方案,并对其效 果进行评估。以IEEE30节点系统为例进行了验证,所 得结论如下:

1)综合指标结合了节点介数、邻近中心性和节点 负荷分布,根据其大小,可快速准确的识别出系统的 关键节点,将其作为ESPS候选安装位置,减小了优化 计算的规模。相较于传统方法,本方法简单易行,且 不需要大量的负荷及发电机数据。

2)采用本文方法得到的ESPS选址方案具有良好
 的效果,可以有效的降低系统网损,平滑负荷曲线,
 达到削峰填谷的效果,并能减小系统电压的波动。

本文可为ESPS的选址提供一种启发式方法,未来 将在该方法基础上,对选址方案中ESPS的容量优化进 行更深入的研究。

参考文献

 金力,房鑫炎,蔡振华,等.考虑特性分布的储能电站接 入的电网多时间尺度源储荷协调调度策略[J].电网技术, 2020,44(10):3641-3650.

JIN Li, FANG Xinyan, CAI Zhenhua, et al. Multiple timescales source-storage-load coordination scheduling strategy of grid connected to energy storage power station considering characteristic distribution[J]. Power System Technology, 2020, 44(10): 3641-3650(in Chinese).

- [2] 丁明,陈忠,苏建徽,等.可再生能源发电中的电池储能 系统综述[J].电力系统自动化,2013,37(1):19-25.
 DING Ming, CHEN Zhong, SU Jianhui, et al. An overview of battery energy storage system for renewable energy generation[J]. Automation of Electric Power Systems, 2013, 37(1):19-25(in Chinese).
- [3] 王承民,孙伟卿,衣涛,等.智能电网中储能技术应用规 划及其效益评估方法综述[J].中国电机工程学报,2013, 33(7): 33-41.

WANG Chengmin, SUN Weiqing, YI Tao, et al. Review on energy storage application planning and benefit evaluation methods in smart grid[J]. Proceedings of the CSEE, 2013, 33(7): 33-41(in Chinese).

- [4] 丁明,徐宁舟,毕锐,等.基于综合建模的3类电池储能电站性能对比分析[J].电力系统自动化,2011,35(15):34-39.
 DING Ming, XU Ningzhou, BI Rui, et al. Modeling and comparative study on multiple battery energy storage systems[J]. Automation of Electric Power Systems, 2011, 35(15): 34-39(in Chinese).
- [5] 李建林,李雅欣,周喜超,等.储能商业化应用政策解析
 [J].电力系统保护与控制,2020,48(19):168-178.
 LI Jianlin, LI Yaxin, ZHOU Xichao, et al. Analysis of energy storage policy in commercial application[J]. Power System Protection and Control, 2020, 48(19):168-178(in Chinese).
- [6] 部宁,张慧媛,王子琪,等.区域电网分布式储能选址定 容规划[J].高压电器,2020,56(8):52-58.
 GAO Ning, ZHANG Huiyuan, WANG Ziqi, et al. Planning for site selection and capacity determination of distributed energy storage in regional power grid[J]. High Voltage Apparatus, 2020, 56(8): 52-58(in Chinese).
- [7] 丁明,方慧,毕锐,等.基于集群划分的配电网分布式 光伏与储能选址定容规划[J].中国电机工程学报,2019, 39(8): 2187-2201.
 DING Ming, FANG Hui, BI Rui, et al. Optimal siting and sizing of distributed PV-storage in distribution network based on cluster partition[J]. Proceedings of the CSEE, 2019, 39(8): 2187-2201(in Chinese).
- [8] GIANNITRAPANI A, PAOLETTI S, VICINO A, et al. Optimal allocation of energy storage systems for voltage

control in LV distribution networks[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2859-2870.

 [9] 吴小刚,刘宗歧,田立亭,等.基于改进多目标粒子群算法的配电网储能选址定容[J].电网技术,2014,38(12): 3405-3411.

WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411(in Chinese).

[10] 陆立民,褚国伟,张涛,等.基于改进多目标粒子群算法的微电网储能优化配置[J].电力系统保护与控制,2020,48(15):116-124.

LU Limin, CHU Guowei, ZHANG Tao, et al. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J]. Power System Protection and Control, 2020, 48(15): 116-124(in Chinese).

[11] 丁倩,曾平良,孙轶恺,等.一种考虑可再生能源不确定 性的分布式储能电站选址定容规划方法[J]. 储能科学与技 术, 2020, 9(1): 162-169.
DING Qian, ZENG Pingliang, SUN Yikai, et al. A planning method for the placement and sizing of distributed energy

method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources[J]. Energy Storage Science and Technology, 2020, 9(1): 162-169(in Chinese).

- [12] 杨火明,徐潇源,严正.考虑配电网韧性的储能系统选址 定容优化方法[J].电力建设,2018,39(1): 30-39. YANG Huoming, XU Xiaoyuan, YAN Zheng. Optimization approach of energy storage system locating and sizing considering distribution system resilience[J]. Electric Power Construction, 2018, 39(1): 30-39(in Chinese).
- [13] 李振文,颜伟,刘伟良,等.变电站扩容和电池储能系统容量配置的协调规划方法[J].电力系统保护与控制,2013,41(15):89-96.

LI Zhenwen, YAN Wei, LIU Weiliang, et al. Coordinated planning of substation expansion and BESS sizing[J]. Power System Protection and Control, 2013, 41(15): 89-96(in Chinese).

 [14] 向育鹏,卫志农,孙国强,等.基于全寿命周期成本的 配电网蓄电池储能系统的优化配置[J].电网技术,2015, 39(1): 264-270.

XIANG Yupeng, WEI Zhinong, SUN Guoqiang, et al. Life cycle cost based optimal configuration of battery energy storage system in distribution network[J]. Power System Technology, 2015, 39(1): 264-270(in Chinese).

[15] 连祥龙,张文浩,钱瞳,等.考虑信息节点失效的电力信息物理系统脆弱性评估方法[J].全球能源互联网,2019, 2(6): 523-529.

LIAN Xianglong, ZHANG Wenhao, QIAN Tong, et al. Vulnerability assessment of cyber physical power system considering cyber nodes failure[J]. Journal of Global Energy Interconnection, 2019, 2(6): 523-529(in Chinese).

[16] 马草原,孙展展,葛森,等.基于复杂网络理论含分布式发电的电网脆弱度分析[J].电测与仪表,2016,53(11):19-24.
 MA Caoyuan, SUN Zhanzhan, GE Sen, et al. Analysis of

grid vulnerability containing distributed generation based on complex networks theory[J]. Electrical Measurement & Instrumentation, 2016, 53(11): 19-24(in Chinese).

- [17] 孟月,张宏立. 虚拟电厂配电网复杂网络的能效分析研究
 [J]. 电测与仪表, 2020, 57(16): 33-38.
 MENG Yue, ZHANG Hongli. Study on energy efficiency analysis of complex network of distribution network in virtual power plant[J]. Electrical Measurement & Instrumentation, 2020, 57(16): 33-38(in Chinese).
- [18] SALEH M, ESA Y, MOHAMED A. Applications of complex network analysis in electric power systems[J]. Energies, 2018, 11(6): 1381.
- [19] 徐敬友,陈冲,罗纯坚,等.基于改进复杂网络模型的电网 关键环节辨识[J].电力系统自动化,2016,40(10):53-61. XU Jingyou, CHEN Chong, LUO Chunjian, et al. Identification of power grid key parts based on improved complex network model[J]. Automation of Electric Power Systems, 2016, 40(10):53-61(in Chinese).
- [20] 吴彤,陈洪涛,赵建明,等.含分布式风电和储能的配网 潮流计算方法研究[J].东北电力大学学报,2015,35(3):1-5. WU Tong, CHEN Hongtao, ZHAO Jianming, et al. Power flow calculation method for distribution network containing grid-connected wind generator and energy storage[J]. Journal of Northeast Dianli University, 2015, 35(3): 1-5(in Chinese).
- [21] 曹严,穆云飞,贾宏杰,等.考虑建设时序的园区综合能源系统多阶段规划[J].中国电机工程学报,2020,40(21): 6815-6828.

CAO Yan, MU Yunfei, JIA Hongjie, et al. Multi-stage planning of park-level integrated energy system considering construction time sequence[J]. Proceedings of the CSEE, 2020, 40(21): 6815-6828(in Chinese).

[22] 代伟,刘林虎,杨知方,等.考虑发电运行弹性空间的风水火联合优化调度与效益评估[J].全球能源互联网,2019, 2(3):232-240.

DAI Wei, LIU Linhu, YANG Zhifang, et al. Combined optimal dispatching and economic benefit evaluation for wind-hydrothermal system with generating operational flexible space[J]. Journal of Global Energy Interconnection, 2019, 2(3): 232-240(in Chinese).

收稿日期: 2021-03-02; 修回日期: 2021-03-15。 作者简介:

李景华

- 李景华(1970),男,工程师,研 究方向为分布式储能规划。
- 化晨冰(1969),男,高级工程 师,研究方向为分布式储能规划。
- 蒋德玉 (1987),男,工程师,研 究方向为分布式储能规划。

曹严(1997),男,硕士研究生, 研究方向为分布式储能规划。通信作

者, E-mail: yan221@tju.edu.cn。

(责任编辑 张鹏)

